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ABSTRACT

The paper embraces some problems on meeting, deviation and
branching of slip-lines in the conditions of plane strain.

The first section deals with the classical mechanism of crack-
ing in metals according to which the cleavage crack emerges at
the meeting of two dislocations or slip-lines. The theory of
this phenomenon is considered with the assumption that the
length of the emerging opening mode crack is small in compari-
son with the length of the meeting slip-lines. The boundary
problem of the plane theory of elasticity thus obtained is
solved by means of Wiener-Hopf method. The formula for the
stress intensity factor at the end of the crack has been ob-
tained. The dependence of total opening of slip-lines at the
point of their meeting on operating stresses has been found.

The second section treats with the solving of the question
about the possible local deviation or branching of slip-lines.
With this aim the authors consider the singular problem of the
theory of elasticity for semi-infinite straight slip-lines
with a branch emerging from its apex and running at a certain
angle with its extension. The precise closed solution of the
problem is obtained by Wiener-Hopf method. The analysis of
this solution shows that in homogeneous and isotropic bodies
corner points and branching points on the contour of the slip-
-line are impossible.
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INTRODUCTION
There are many works devoted to the branched (or kinked) crack

problem in fracture mechanics. We believe the most correct ap-
proach to this problem is that based on the viewpoint of singu
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lar perturbation and of vanishing small scale formulated first
by one of the authors (see Cherepanov, 1979). This approach is
used below for solution of two similar problems concerning slip-
-lines.

E}ERGENCE OF A CRACK AT THE MEETING OF TWO SLIP-LINES

Let two slip-lines meet at a point O (Fig.1). We shall assume
that the conditions of plane deformation are valid. Then, due to
the concentration of stresses at the point Q , there appears a
possibility for emergence of a cleavage crack at this point and
in its vicinity. This mechanism of crack formation in metals
(Kipnis and Cherepanov, 1983) is similar to that of Stroh (1954)
and Cottrell (1958), see, in detail, Honeycombe (1968).

Let us consider only the initial development of the crack. We
may assume that its length is small in comparison with the cha-
racteristic length of slip-lines and dimensions of the body it-
self. Confining ourselves to a symmetrical case, we come to the
gsingular boundary problem of the plane theory of elasticity
whose boundary conditions have the shape (Fig.2)

G-« ,[Go]=[Tzo]=0 , [U6]<0, Tze =Ls
0=0, Teo=0; O=F, Ceo=0, Ups=0
6-0, z<¥¢, 66=0,; 6-0, 2>, Ue=0

Here 66,126,062 are stresses, lle, Uz - aisplacements,
[7%7- jump of value‘A/, %} - shear yield point. Due to symmetry
only half-space (<8 <9 is considered. It is assumed that
Tp<ot <IT.

At infinity the given asymptotics which represents the solution
of the symmetrical problem of the theory of elasticity concern-
iﬁg the plane which contains two slip-lines meeting at the point

without a cleavage crack is realized (Fig.2). This solution
is determined by the formulae:

66=9 +%c0s26 | Tro=Tsin26, 62 =9 ~Ccos26
Up= 50Tesin26, ts= V-2 g -Tcos2e]e

G .

L= Ts/sm P
where ¢ is an arbitrary real constant characterizing the inten-
sity of uniform two lateral extension, £ - Young’s modulus,

- Poisson’s ratio. The constantg is considered as given in
the formulation of this problem.

As we see, the solution (1) in stresses is continuous like in
strains. For stresses it has the form characteristic of the ge-
neral solution of the plane problem of the theory of plasticity

with the condition of plasticity (6% -66/24%26=4%?2 where £

is the lasticit%‘constant equal to ng/shtéék for solution (1)
Value equals 7s only at x=3%/4 , at othercA will be
ﬁf)?} . Value €s characterizes a well-developed plastic defor-

mation slong the slip-line, and value % characterizes the ini-
tial "delayed" plastic deformation of a body element of a larger
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size (Cherepanov, 1979). Macroplasticity is realized.as a re-
sult of forming and developing of many slip-lines wh}ch divide
elastic zones (Cherepanov, 1979). In physical terms }t means
that on the scale large in comparison with the emerging crack
(but small in comparison with the characteristic size gf the
body and slip-lines) the beginning of plastic deformat%on is
the case, corresponding to the angle point M of the diagram
6-£ (Fig.3).

By means of Mellin’s transform the initial problem is reduced
to the following functional Wiener-Hopf equation:

S +Qp)="tg prGERIP (P
p+7 +@@)(—5,9</D/?ep2082, P 0<£,3<7) o

P o) JLwo(pt0)-9-21P

- . £ (au .
@(P)‘QFW) f@ze 2?52 P d/D
o
268, (sinfpx ~psin¥k) +A, Do
660)- @P%(&Aﬂé\f@)
A= sin Zpo+psin Do, Dz =$in 2p(9r-0t)-p sin 2
8, =cos Zpo - cos 2ox Oz = Cos 2p(F-ot)~Cos 2.

, 6"=—?—°Z‘

The solution of the equation (2) is as follows (Kipnis and Chs«
repanov, 1982):

Yoo G () K , K .
L=~ ogiizrlocy ‘c*((—fﬁj (Rep<0)

- 6K K p) Glp) -
gogb) Oo+<}<;+(:t/ (ZQ%D CU
1 L Gl _{G*(,o), Rep<0 (4)
ex - =
/O[Q.sz.-éc° £=5 df] G—(/o), Pep>0
ﬁa%v= /]1?%” (/Zé)— Euler’s gamma function).
[(%%p)
Making use of solutions (3), (4), known asymptotics of the
elastic field in the vicinity of the crack end and the_ theorem

of Abel’s type we get the formula for the coefficientj?j
(stress intensity factor)

K_/‘=X(s:%séak+9)‘/? (5)
Y=¥@)=2V2/[V&GE1)]

(3)
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The value of the function )'(oc) at some values «£ are given in
Table.

The dependence of the crack opening 7 at point ¢ on stresses
Zs and g and the length of the crack ¢ 1is expressed by the

formula Vz X{_) <
- 41— oL S
UV=F @) SI'/z20L+9)£ (6)
21 &)= [ 8sin’x (x% st )+ 2( 2ot +sin 2t) (27?—204—5/,1209_7’é
8T sir ok

According to (5), (6) we have

K =AEU/[(1-9IVC] 7)

Formulae (6), (7) solve the problem of the quasi-brittle crack
formation in metals according to the Cottrell mechanism.

In the simplest case of a quasi-brittle crack of Griffith-Irwin
Kr=Krc (Kie - fracture toughness) and from (5) it follows

that
g +%s [sin 2 :Krc/[(y/?/ (8)

Dependence (8) is presented qualitatingly in Fig.4, where

ng—Q;/yn2a . Tt is obvious that the development of the
initial crack of any length will be unstable since value £ is
reduced with the growth of ¢ . Consequently, the final size of

the crack developing at the meeting of two slip-lines is deter-
mined by the structural characteristics of the material (the
crack is stopped by some barrier, peculiar to the given struc-
ture and absent in the problem formulation considered). Besides,
it follows from (8) that the problem has a solution only under
the condition ¢ > @ . Hence, the external field of extension
should be sufficiently intensive.

When the value of Xrc depends on¢ for smallé€ vanishing with

#->0 faster than yZ , then the crack development will be
stable at the first stage with the growth of¢ . In this case
most exactly corresponding to the original Cottrell mechanism
there may exist stable brittle cracks.

In the cese of X=77/0° while the value of Xzc being independent
on £ our model of cracking is most similar to that of Stroh
(1954), although with a double slip-band.

If we assume that the slip-lines began to develop from the free
straight linear border of the body (Fig. 1a), then, as it is
shown (Cherepanov, 1979), sngle o« will be equal to 37 /4

In this case X7 = 0,6252£Zf/[(/—l)2) V@] . Hence we obtain

the following expression for the length ¢ of a brittle crack
of Griffith-Irwin:

¢=03909°V°* /[ Kz (1-V)?]
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THE PROBLEM ON DEVIATION AND BRANCHING OF THE SLIP-LINE

T.et us consider the balance of a homogeneous isotropic elastic
body being under the conditions of plane deformation and contaii
ing the straight linear slip-line. Let us assume that from the
apex of the slip-line at some angle with its extension there
runs a straight branch whose length is considerably smaller tha:
the length of the slip-line and the dimensions of the body. It
is necessary to estimate the angle of inclination of the branch
to the extension of the slip-line and to determine its length.

laking use of "the microscope principle" (Cherepanov, 1979), we
come to the singular problem of the theory of elasticity with
the following boundary conditions (Fig.5)

6o(2,%) = 6O (2,-%), Tro(2,5)=Teo(2, %), Ue(2,7)=Ue (2,-%)
9-F , Teo=Ts ; O=ot, [(6]=[Te0] =0, [Ue]=0
f=ct, 2<¥€, Tre=%Ls; O=ot, 2>€, [U=]=0

At infinity the solution of this problem behaves like the solu-
tion of the problem of the theory of elasticity concerning the
plane which contains a semi-infinite slip-line.

This solution has the shape:

; a . 6 . 30
bo=-Ts sin 20+ C,c08 28+ 5~ Z—‘?f\/?_%&%,— (S”L.E + 3z

o e
=T a,si 294-&_‘_ COS—Q+5CO$§—'
qze CSCOS29+ 7 wt ‘/VZ_]FZ( 2 2

. L 6 _z. 36
67 =T sin 26 - C,cos20+Cy - %:(551,1 £ -Bs5in3E

Here J(EZ, Cﬁ, CQ are the arbitrary real constants which are
considered as given in the problem formulation. They characte-—
rize the intensity of the external field and are determined
from the solution of the external problem.

Tet us assume that at the head of the slip-line (in the vicini-
ty of point &@=ot,2=€ ) there is some concentration of stress
es characterized by the elastic asymptotics for cracks with
plastic filler (Cherepanov, 1979). This asymptotics is quite
determined only by the stress intensity factor A7/ . The crit:
cal valueX7rc of the coefficient £7z (slip toughness) deter-
mines the resistance of the material to the emergence of new
surfaces in it. Value Z7Zc can be considered as the given cons’
ant of the material.

The problem thus formulated is reduced to the functional equa-
tion of Wiener-Hopf resulting in the formula for the coefficie:
Z>7 . Equating the latter to Xzrc , we come to the equation

for determining the length of the branch
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_qyKar - G- N1
-D&r | DG L
e ’@% D) Va7 sina (sinox-A. cos)

-A‘:K-’-"'_C/[(_rl

(9)

- COSOY2+3cos 3K/
9= 2a6¢-72)

JAV:C;/Q;

Here C;?}v'is determined by the formula (4), where

G( ) =7 /C‘o.spo( COSK ~ PS1n Pk Strrec|?
r cos,o.éz— ’
It is seen from (9) that the angle of inclination of the branch

to the extension of the slip-line should satisfy the condition
D)= 0.

We shall assume that in a homogeneous and isotropic body the

slip-lines de}? op in the direction of the positive maximum of
the gunction OUP(see Cherepanov, 1976; Kipnis and Cherepanov,
1984).

The existence of the single positive maximum of the function

ék} would correspond to the presence of a cormner point on
the contour of the slip-line (deviation of the slip-line), and
the point of maximum would represent the angle of inclination
of the branch to its extension. The existence of two or more
positive maximums would correspond to the presence of the point
of branching on the contour of the slip-line (twinning or branch-
ing of the slip-line).

However the investigation shows that the functianjﬂﬂ%} does not
have any positive maximums &t the sections of its continuity.
This circumstance enables us to come to the conclusion that in
homogeneous and isotropic bodies corner points and points of
branching on the contour of the slip-line are impossible.

Thus, a deviation of a slip-line may be only an open mode crack
which, in turn, may deviate as a slip-line. This results in a
saw form shear rupture (Cherepanov, 1983).

CONCLUSIONS

The problem of formation of cleavage crack in metals according
to the Cottrell mechanism is strictly analysed.

Kinking of slip-lines is shown to be impossible. Hence, kink on
the contour of a slip-line can appear only due to local mode I
(or mixed mode) rupture.
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Fig. 1. Meeting of slip-lines. Fig. 2. Singular
small scale
approach.
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Fig. 3. Diagram 6-& with Fig. 4. Dependence

delayed plasticity. of ¢ on

according to

(8)

= 105 [105 | 415 | 125 435 | 145 | 155 [ 165 | 175
Yix) 118544 17710 1,147 16574 |16088115633[1,5171 | 14645] 4,585

Table 77 as function ofcX
O=«, 2=£
2
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Fig. 5. Slip-line kinked.
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