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ABSTRACT

For a blunt crack the J-integral is path dependent on contours
very closed to the crack tip even for elastic material. Using
the incremental J-integral theory we introduce a new parameter
Jtcharaterizing the behavior of a crack tip and prove that the
J-integral is nearly path independent on contours whose radii
are greater than several COD ircij,1A£ij '6",1A613 =0 in the

1J
plastic regions.
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INTRODUCTION

In the present time it is proved that for the ideal crack the
J-integral introduced by Eshelby, Rice and Cherepanov is path
independent in the cases of linear elasticity and power harden-
ing plasticity within the context of deformation theory of plas-
ticity. But for more realistic incremental theory and the blunt
crack is not solved now(Atluri,1977; Mcmeeking,1977; Miyamoto,
1981) In this paper we will dicuss this problem in general for
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the small strain and get some useful results. For the finite

strain we will discuss shortly and results are similar.
BLASTIC BLUNT CRACK

Let O be the general focus of the blunt crack. Let O also be
the original of the local coordinate system. A is the crack tip.
OA=Ro is the general focal length (Fig. 1). The stresses near
the blunt crack end for the mode I are (Kuang, 1982)

6,]1 = ( K, /2nr )(cos5 - #sine sin¥ - —%cos—’ig)

522 = ( K4 /42rr ) (cos€ + £ sine sin—’i,_g+—ﬂ‘r-_:-cos¥) 1)
5,]2 = ( K4/ 2rr )(zsine cosize--f_—’sin%g)
According to the definition of the J-integral we have

J -jf, (W dx, - Td,, ds ) 2)

where[’ is a counterclockwise path encircling the blunt crack end.

For simplicity we take /7 as a circle arc with radius Ry and its
center is located at O. ¥,q =5u/2xq , ds is a differential arc
length along the /”. Other symbols are the usual notations. For
the plane problems we have

1 2 2 y 7 2

52 {054+ 055, - 206, 6,5, + 2(1+0) 65, } (%)

T = Gij ny n, = cose n, = sine )

where for plane stress: E'« E, V'= )
for plane strain: E'= E /( 1 -p° ), V=V/( 1 =V)
Substituting (1) into (3) and T.u,q, we get
W= (Kj/2mrs’) cos”R{(1 -v) « (1 4+ ) sin?2)  (5)
T. U, = ( K%/Ban’){ ~( 3 +V) + (9 - 7V')cosé/s
+ (5 =v) cos2e - ( 1+V’) cos 36/4 ) (6)

W =

Substituting (5), (6) into (2) we get
J = (K§/urE’) {4P+ ( 140) sinP /4 - 2 sin2p _
-( 1 +V)sin39/12 } 7

where 77 is the polar angle at the end point of /7( Fig. 1). We
may approximately take the equation of the end of a blunt crack

as ( Kuang, 1982 )

2
R-Ro/cos—} (8)
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S0 j’ can be determined as
cos(f/Z) =,JRO/R,]

The calculated result shows that the effect of .‘is small.
Table 1 and Fig.2 show the relationship between R,‘/(ZRO) and

J/(K5/E")
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Table 1 (v’'= 0.4)
R{/(2R,) 1/2 4/7 2/3 1 2 4 8 15
# 0° 41.4° e0° 90° 120° 138.6° 151° 158.9°

J/(K2/E°) 0 0.08 0.22 0.53%6 0.829 0.935 0.977 0.991
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Comparing Fig.2 with Mcmeekings result(Mcmeeking,1977) we find
that the relationship between R{(zRo)and J/(K%/ED are similar in
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spite of the difference in methods and constitutive equations.
From Fig.2 we know that the J-integral is path dependent when
Hq/(2R0)< 6~8 for the blunt crack. If we account the variations
of geometrical configuration for a initial ideal crack in the
calculating process then the above results also tenable.
Therefore the most possible main source of J& path dependence

is that the singular point O don't pe entirely enclosed by 7
But the J-integral is identical for any two /], [Z, if their ini-
tial and end points at the crack boundary are the same. the rea-
son is obvious.

INCREMENTAL J-INTEGRAL IN NONLINEAR BLASTICITY

Let the incremental J-integral be
AT x“%{Aw n, - A( Ty ui'1 )}ds (10)

where AW, A( Ti u; 4 ) are the incremental W and ( Ti uy 1) from
’ ,
a deformation state M to M + 1. For nonlinear elasticity we have

W o= W( éij)’ Gij = saw/aéi:j 11)
AW = SijAéij + A2w

2
AW =4(> W/aéijaéml)ﬂéij Aéml (12)

1 3
2 - (2 w/aéijaémlaépq)d é,iJ.AémlAf_pq .
- A
Aﬁ'ij 24,W/3 éij }

2 1
aAzw/aéiJ. -A()"i'j - {3 W/aéia.af,ml)déml (13)
(AW),q = (24 w/‘;&ij)éij,’l + (o2 W/.QAéij)AéiJ. P
=4055&55,1 + ( Oi5+ 805538854 4 (34
AC O35 u5,0) 5 = a0 vy a5 + (Og5 + 8030405 a5 (45)

If there are no singular point, etc. in the region V enclosed by
[7then by using Gauss divergence theorem the eqn.(10) gives

=] {4 = ..ou. .

83 <Jfaw 5 - aC 0y w0, ) av (16)
Using egns. (14), (15) we easily know AJ = O, i.e. A4J is also
path independent. kgn (10) may also written as

AJ = Jv{(s'ij Aéij + A W)n, - (TiAui,’l+ ATiui,’l +
+ AT A ui’,l)}ds “17?7)
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= - A -
= Lﬂ{ (633 Aéij + ABW) n, ( T, + ATi) ui,1} ds
- - g L . <
5A Ojj,10E55 + (G2 W/26,5) €54 4} dv (18)
We note that in general case'QAZW/QEiJ # O. If the incremental

load at every step is small then egn.(17) is reduced to eqn. (19
or eqgn.(20)
AJ = ; = = - .
J =fa2ds ; 4%= 0, 8E,5 ng - Tyluy 4 - ATy 4 (19)
where J = dJ/dA~ , Amay be time or loading parameter, and
J =fN3 an (1)

If AJ is path independent, then J is also path independent.
INCREMENTAL J-INTEGRAL IN ELASTO=PLASTICITY
Let egqns. (17)-(20) also be the definition of the incremental

J-integral in the elasto-plastical theory. Fig.3 shows the de-
formation process from the state M to M + 1. In this process

Fig.3

the values of variables on the connective boundary between the
elastic and plastic regions may be discontinuous. But they must
subjected to some restrictions. At the boundaries of the state
M and M+1 we have
Equilibrium conditions
[Ti] - [ATi]’ [Gnn] - [G

ns] = [40,] = [46 )= 0 (22)

Continuous conditions



1016

[ui] = [Aui] -[Aun] = [Aus] = [Au =[Aus’s] =0 (23)

n,s]
and the following relations may easily be constructed (Fig.1)

[634] = [6;5] ng , [Gég] = [Gés] n? * } (24)
[&12] = = [O45]ny 12
[2u1 4] = [28g, ]85 - [avg o]ng e )
= [a ng n, -[sug ] n5
oty ol = (Bl ]y Ty - (A 5 2 (25)

Buy 4] = [4u, j1ng o, *[aug n] 07,
2
@u2,2] = [Aun,n]n2‘4Aus,n]n1 e
At the initial boundary of M state the material on two sides

just begin plastic deformation so we have 5
[Agijla[Aui’1]=O (at most equal to const.(AGij) ) (26)

At the new boundary of M + 1 state we also have
[G&J]- [ui,1]=0 (at most equal to const.Aﬁij) 27)

In eqns.(22)-(27) Ohn, Ghs’ O;s,u-
shear and tangential stress...respectively at the boundary curve.
[F]=F* - F~, where F' and F~ are the values of F at the left and
right sides of the counterclockwise path (boundary) respectively,

Let the integral path is /;2345678 in eqn. (19) (Fig.3) then

correspond to the normal,

AJ=j/"12545678’ fﬂ125d78+f/434b6’7c5 + ff'ussau +

Analyze the eqn. (28) term by term
(1) j/'}cr? _f/-'adr? =f/1307{[ GIJAEJ.J-]n'] -
- [TiAui,,I] - [omy ui',l]}ds (29)

where[;c7 is part of the new boundary. Substituting eqns. (22)-
(25) and (27) into egn. (29) we know the term [ATi uj 4] may be
neglected and

Jrser = J3an = f/~507{()‘ij[A£ij] ng - Tjleuy, ]jds=0 (30)

Similarly we have

(2) Jrias - Jrive = Jruastlyl 0351 - ATy [wy 47}ds
where [ZaG is part of the initial boundary of M state.
A
3 Ihuvepes = = Sl 03500605 - £ 12075} av s

where AV is the new incremental plastic region.

(&) 5%&56&4 = 'Jv,{ 613’14613 - éij,faozj} dv (33)
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where V|, is part of the initial plastic region enclosed by/25g14
For the elastic material we can easily prove that the egns. (31)
-(33) are all equal to zero. For the elasto-plastic material
there are no strong discontimicus boundary of 6ij 'éij"' so we
have the following results.

At the initial boundary the values of [Gij], [ui'1] are all of
the order a Gj45 » So that the value of eqn.(31) is of the order
(Adi.)z. Because AV is proportional to Aﬁﬁj’ the value of eqn.
(32) is also of order (Aéij)e. In the initial plastic region if
deformation theory of plasticity can be applied then eqn.(33)
is exactly equals to zero. For complex loading and unloading
cases the value of eqn.(33) may be finite. From the above dis-
cussion in the general case we introduce a new parameter 4J

or
. t
Jt characterizing the behavior of a crack end:
83t = S48 ds = 4J - J’/—/;,A.é ds
= - Py A
Ag jv{o_i.j,‘lAEij €5,1%035} av (34)
Jtaj;—'é_é ds = J-f[/,)}_ ds
=J - 5,15 - éij’1o~ij}dv (35)

where 4J and J are determined by (19) and (20) with a arbitrary
path respectively. vazvi is the sum of the regions Vis V2,....
where occur or had occured the plastic deformation located at
the interior to /” but exterior to /e . [p=Z/; is the boundaries
of V and positive direction of Fg is selected such that vV, is
always located at the left side alon,ﬁi. /£ 18 a path enclosing
the tip with radius €-0 for ideal crack or a path departs from
boundary a small distance €—0 for a blunt crack. From the pPhy-
sical view, ¢ is a small but finite value determined by the be-
havior of materials (Kuang,1982). Obviously AJ; , jtare path in-
dependent. If in V we have

9ij,1%6135 = €35,12 035 = O (365
then 4J and J are all path independent. The condition (36) is
less restriction than the condition of proportional loading.
In the finite element calculation the incremental load usualy
is small but finite, so we need change eqns.(17), (18), (34)-
(36) into the form of finite deformation and AJt is calculated
by it.
For ideal plasticity, eqns.(29), (31) may take finite values ,
so that we need account it in calculating AJ.
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For a general multi-connected domain the first two equality of
equations (34), (35) are also valid. It is importent for pro-
blems of inclusions.

J-INTEGRAL IN THE FINITE DEFORMATION

In the finite element method for the incremental elasto-plastic
theory the updated lagrange method is usually applied. we also
apply this method to discuss the J-integral in the finite de-
formation. Let the initial state is Co . We can define the AJ-
integral at the N+1 state as

AT, = jr,{AwNngq - A(ta'.'i ng ug‘,,, )} as? (37)
where AJN+’1 is produced by the Nth incremental loading. t,ji
the lagrange stress components and equal to the Euler stress

components G,ji at the state N but Atgi not equal toAGgi.

AW = Gy Auy g+ AW (38)

= At i .
aW = (Atg Ay o )/2 (39)
The egn.(3?7) is the natural extension of the eqn.(10). It is

easy to prove that for nonlinear elasticity AJN+’I is path inde-

pendent. If the incremental load at every step is small then we

are

have f 2

AJ = adds ;

N+1" /7 } (40)

adi= T30 5% 7 Bai Pgtta T A% Py Y
In similar way to the last section, for elasto-plasticity we can
introduce

43¢ = JpAa%ds = AT - [548,ds

€
= e {580y g+ 885,80 ) -

i, ~ BjAts4 ui',]}d/" (41)

= AW - n. . . . - n.
ff' { n,Aw ng(tjl +At:Jl)Aul’,| nJAtji ui’,‘}d/"

- n,j(tji + Atji)Au

L -
+ fV{AtJ.i(G'i Ui g1+ 2495 49 )
L

- Aui.j( tii,0 % 74 tji',l)}dv (42)
For the small incremental loading we have

= A - -

AT, J jv(tji',lllui"j uj gqAt54) av 43)

If there exist some plastic regiogs VsZVi- V,' + V2 +...+ V, and
the corresponding boundaries are //: -ZI}'- /,7 +...+/; then

A
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Fig. 4

Ay = Jpea2ds (Fig.4a) is equal to (j,.—-j,—; - J;—‘y_ —_I/i—..,-...—f/z)dga
(Fig.4b) or equal to j/.A_é,ds = Sy * Spateeet v +...+J'V}-., teoot

+ )(tji,’lAui,j - ui,,j’lAtji)dv' . .

We also note that in the above equations n. are the direction
consines of a unit normal to [~ in the N state. /7 is composed of
the same particles but occupies the different locations at the
different state.

From the above discussionwe can find that the J-integral in the
region where are occured elastic and plastic deformation at di-
fferent parts is rather similar to the contour integral of func-—
tion holomorphic in multi- connected domain.

CONCLUSION

We proposed a new parameter characterized the crack tip behavior
AJt and Jt; =-ZAJt. Jt could be instead of the usual parameter J
as a fracture criterion in the general elasto-plastic deformat-

i o . oAbu, L = u., .A4¢t..
ion. If tal,‘l ul,J ul’a,] tJl
else J, £ J

usual *®

= 0 everywhere then Jt = Jusual®
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