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ABSTRACT

This paper presents a summary of the recent work of the authors
in following areas: (1) The stress-strain fields at the crack
tip in a Reissner's plate. (2) The stress—-strain fields at the
crack tip in a Reissner's shell. (3) The calculation of the
stress intensity factors for finite size plates.

INTRODUCTION

The study of bending cracked plates and shells is one of the
fundamental problems in engineering. The problem is of consi-
derable importance in many areas, such as aerospace industry,
chemical industry etc. In the earlier literature the classical
theory was used (Williams, 1961; Folias, 1965). In recent years
many investigators began to study the problem with Reissner's
theory (Reissner, 1947). Knowles and Wang(1960), Hartranft and
Sih(1968) indicated the singularity of Reissner's plate. Murthy
(1981) found the expansions of stress strain fields at crack tip
for symmetric case. Yu and Yang (1982) given an asymptotic solu
tion of zero order. For a finite size plate in bending, the
stress intensity factors for Mode I were clculated(Barsoum, 1976
Rhee and Atluri, 1981; Li Yingzhi and Liu Chuntu, 1981). The
stress intensity factors in infinite plate with uniform twisting
moment were calculated using integral transformation (Wang,1968;
Delate and Erdogan, 1979). The stress intensity factors for mix
ed mode in a finite plate using Reissner's theory were obtained
by Liu Chuntu and Li Yingzhi (1983).

Since curvature exists in shells, extension and bending are cou-
pled, which makes the problem very difficult. Recently, the
Reissner's shell theory was used and a ten—-order differential
equation was derived. Since the problem is complicated only the
first term of expansion was given(Sih and Hagendorf, 1973). In
order to calculate stress intensity factors (especially for mixe
mode), the expansion of the stress—-strain fields at the crack t:
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was proposed (Liu Chuntu and Li Yingzhi, 1984).

In recent years, the authors studied the stress-strain fields in
Reissner's plates and shells using the eigenfunction expansion
method. Based on the results obtained, the high order special
elements are used to calculate the stress intensity factors for
plates and shells., In our experience, this is one of the ef-
fective methods for analysis of cracked plates and shells.

THE STRESS FIELDS AT CRACK TIP AND STRESS
INTENSITY FACTORS IN REISSNE'S PLATE

The Stress Strain Fields at Crack Tip

A plate containing a semi-infinite crack in bending is shown in
Fig. 1.

Based on Reissner's theory, the governing equations could be ex-
pressed in terms of three generalized displacements ¢, ¢3 and
W as follows (Hu, 1981) ¢
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TET%%;TT is bending stiffness

C = % Gh is shearing stiffness

Where D

The boundary conditions are

When 0= + X

Mg = My = Qg =0 (4) Fig. 1

In order to obtain the stress-strain fields at the crack tip.
we could use the following twvo methods:

(1) The double eigenexpansion method (Liu Chuntu, 1981)

The generalized-displacements ¢; » ¢b and W could be expanded in
double power series.
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Substituting eq. (5) into eq. (1)-(4), comparing with the terms
of O(r?*"2), we have
— ” +Y | _ =t 4 L e
(= 1) @+ 452 ol + (AFFA- A=) bD =0

—— ¥/ 4
(32 54020 )/ + AFE R2=1obo + b =0

¢ + MAC = 0 (6)
The corresponding boundary conditions are:
’
When 6 =% 7% (1+ Pr) @ + bo = 0
a’p + (_/\—l)bo = 0
¢, =0 7))

From eq.(6), the solutions of a,(6), bo(8), co(6) could be found
Substituting these solutions into eq. (7), the linear equations
whose unknowns are the coefficients of the expansions could be
obtained. In order to satisfy these equations, we let

A =3 n=20,1, 2, .... (8)

Comparing with the terms of O(rA 1 ), O(rA i r@spectlvely,
the asymptotic governing equations and bounary conditions could
be found. These governing equations are inhomogeneous. The
solutions of the corresponding homogeneous equations have some
regularities.

With the solution of a;(se), b;(8), ci(8#) known, the expansion of

Y > Y% and W could be obtained. Based con the asymptotic sglu—
tion of the crack tip displacement fields, a high-order §pec1a1
element was proposed to obtain the bending stress intensity fac-
tor for a finite plate (Li Yingzhi and Liu Chuntu, 1981).

Since the problems is complicated, only the first several terms
of the expansion were given (Liu Chuntu, 1981). 1In order to
obtain the general solution, a better method was proposed.

(2) Displacement Function Method (Liu Chuntu and Li Yingzhi,

1983)
Hu (1981) introduced two displacement functions F and f:
_ 9F >f _ oF _ 2f °
%= P (é'_ Y o7 ()

Substituting eq. (9) into eq. (1)-(2), we have
2 [2vF+ cw-p)] + DSy f —cf =0 QO

Syl ovF+ccw-F - 3xl 2 52— cfl=0 D
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This is Cauchy-Riemann equation, from which it follows that:
'_5_)’ DV — cf + ([DVF+ C(w—F )] = CPerriy) (12)

Where @ (x+iy) is an analytic function, Hu(1981) assumed that

$ (x+iy)=0, it is correct for cases without singularity. As the

crack tip 1s a singular point, general speaking, & (x+iy) # O.

Separating real part and imaginary part in eq.(12), we have

VF = 4k°F = 44 RSP (13)
w = [—?]’V’F+_Im_¢ (14)
Where 2 _ 2C
4é— - DCI=P)
Substituting eq.(9), (14) into eq.(3), we have
DVVIE = P (15)

For a cracked plate, the bending fracture problems are reduced

to solving two equations (13), (15) in terms of F and f with the
boundary conditions.

According to the singularity analysis (Knowles and Wang, 1960;
Hartanft and Sihl*1968), the singularity of Mx, My, Mxy, A x,ay
should be of O(r *). These conditions demand that F and f should
be of O(r*) and W should be of O(ri). These are the singularity
conditions at crack tip. Only by letting ¢ (x+iy) # O could we
find a solution which satisfies all the singularity conditions
for mixed mode.

The function @ (x+iy) could be expanded in series
L ; A . M e
?(14';‘,)—/2‘ (p/({-‘Q,//‘)j —5 (ﬁ)ﬁ' ld/a)r (COS}(O"‘ tSl’!/‘B) (16)

The solution of eq. (13), (15) could be expressed in the sum of
a particular solution and the general solution of the correspond-
ing homogeneous equations,
The particular solution could be chosen as follows

£, 0= -Re P F, =0 (17)

The homogeneous equation corresponding to eq. (13) is
2
vt - 4é2£, = 0 (18)
When P = 0 , from eq. (15), we have
DVv? £ = o (19)
Eq. (19) is a biharmonic equation, let

Fer,e) =2 r**! Fee) (20)
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i i i 1d be expressed
Eq. (18) is a Helmholtz equation, function ff cou _ex i
ig modified Bessel functions. From the condition of_flnlt; strai
energy, we should drop out the modified Besgel functions of sec-—
ond kind and fo could be expressed in modified Bessel functions
of first kind I.(2kr) only.

For symmetric case

A = Jinde- Ii c2kr) (21)
For anti-symmetric case
£ = Gsie Ik (22)
* . .
The linear combination of f. , fa 1is also a solution of eq. (18]

For convenience the general solution of eq. (18) is expressed in
the following linear combination

»*

£ =22 Aoz Bocten b Brovzn Fivozn ) (23)

n=0,1,--

i i i the linear equa-
Substituting eq. (20), (23) into eq. (18), (19), .
tions whose unknowns ;re the coefficients of ?he expansions coul«
be obtained. In order to satisfy these equations, we let

A =+ n=0,1,2,... (24)

With the condition of finite strain energy, A should be positive
only. By using the boundary conditions, the relations betyeen
coefficients in eigenfunction expansion coulq be found. W;th "
the expression of F and f known, the expresslions of Y » % an
W as well as Mr, Mg , My ,Q, ,Q¢ could be obtained.

Numerical Examples

Example 1. Infinite plate with uniform bending moment

This problem was studied by Hartranft and Sih (1968). The stres
intensity factor is

12
K{(g) = T’i P, Mt (25)
The maxium value takes place at z = h/2.
Ky = _6;; Bers 7@ (25")

i i ini ! ilength
In order to simulate the infinite plate, the plate's semi :
L should be larger than 20a. The graph and results are shown in
Fig.2 and Fig.3 respectively.

Example 2 Finite plate with uniform bending moment (Li Yingzhi
and Liu Chuntu, 1981)

i i i i i ity factor
In order to investigate the variation of sterss intensi
of finite plate with different thickness and width, the stress a
intensity factors for a/L = 0.1, 0.2, 0.4 and 0.5 are calculate
The uniform bending moment is taken as 1 kg-cm/cm, crack semi-
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length a = 1 cm. The results are shwon in Fig.4 and Fig.5 re-
spectively.
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Example 3. The effect of boundary conditions on the stress in-
tensity factors (Li Yingzhi and Liu Chuntu, 1981)

In order to compare with the effect of different boundary con-
ditions on the stress intensity factors, the calculations of the
simple supported plate and free plate are carried out. In the
calculation the bending moment is taken as 1 kg-cm/cm and h/a=1.
The results are shown in Fig.6

Example 4. Finite plate with uniform twisting moment (Liu Chuntu
and Li Yingzhi, 1983)

The infinite plate with uniform twisting moment was studied by
Wang (1968), Delate and Erdogan (1979). For finite plate, the
numberical graph and results are shown in Fig.7 and Fig.8. In
Fig.8 the solutions for a/L = o is obtained by extrapolating
method, which represents the solution for infinite plate and
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compares favourably with that results (Delate and Erdogan,
1979).

v . 8- _
] ° _,M

@0~
A AN ~
(4 . ( t -4 - o(Delate &
s < ! Erdogan ,1979)
_S__ za,ﬂ_%_qi .2~
o, P
é c ! o -1 ugf_ﬁgm_n4ﬁiiL
| i o Coy
(Pﬁﬁ]nbb 2 Kin -
L__&—— (3,«"‘1”0-5, \“:.0.3)

Fig. 7 Fig. 8
THE STRESS STRAIN FIELDS AT CRACK TIP IN
CRACKED SPHERICAL SHELL

The Governing Equation of a Cracked Spherical Shell And Their
Simplified Forms

A spherical shell containing a through crack is shown in Fig. 9

with the crack tip at the origin of the coordinates. The shallc
shell theory, taking into account of shear deformation, could be
expressed as follows (Hu, 1981).

The governing equations are 3
(y% 1—» ¢ mﬂa@’LFC(aw_¢)=o
D 22 + 2 392 2 oxIJy X X

(26)

i+ Ity =2 2 Y QW _
D55+ 5 ax{+-%7l)+c 5= =0 27y
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Fw  Aw ok 2
C(;—F-Fa\y_?'—e_;'_;%—) +KV19+_9 = 0 (28)

Where k is the curvature, @ is the stress function and

3 2
Mz::_f}‘ Ny= 2L Mey= - 3523
The compatibility equation is
L vy + K7W = 0 (29)
Where B is the in-plate stiffness.
Introducing displacement functions F and f, let

Substituting eq. (30) into eq. (26), (27), we have

Il
Q

e - =212 ¢/ 2F_
2 [oviE+ cw-R]+ S5 ! »Vf - cf] .

FLoves comrl B2 v ch) = o

Eq. (31) is Cauchy-Riemann equation from which it follows that

D 2z - 2
- - ’))V - C + D cwW— — 3
i f f+ ¢[DV£E+c Frl=C PBirviy, (32)

—
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Fig. 9 A-A

Separating real part and imaginary part in eq. (32), we have

2 i
DVF + C(wW—f )= ¢ In® (33)

D i—»)Pf — ef= CReZ
d (34)
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From eq. (33), we have
W= F- 2v¥ +I.% (35)
Substituting eq. (30), (35) into eq. (28), we have
DVVF - kvie = 2 (36)
Substituting eq. (35) into eq. (29), we have
% Vg + KV - KR VIV = 0 (37)

The governing equations could be reduced to three equations.(34),
(36) and (37) in terms of F, f and ¢ . The function f, which

is similar to that the bending plate case, is uncoupled. _The
functions F and @ should satisfy two four-order differential
equations.

If g = 0, from eq. (36), (37), we have
vevi - KBy o K28 pif o (38)
c D
In may be proved that, function F in eq. (38) is the sum of three

functions Fo , F: and F2 , which should satisfy the following
equations respectively.

F = Fo, + £, + Fs (39)
72[0 = 0 (40)
vh = G4l F = 0 (41)
V6 — i Fr = 0

A2 2 = (42)

Where

—Zp
2 X8 | |k%_«B 1= f_zé_/’(_e_z_if
A= e N et T D A= Zc 4c* >

With the F known, from eq. (36) the ¥ could be obtained.
4D
@ =9 + A+ AR (43)
Where ¥, is harmonic function, which should satisfy ve, = o

From eq. (34), function f could be found as

f =4 — Red (44)
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fo should satisfy the following equation

vih — wpmifo = 0 (45)
Where 2 _ 2C
¢/H 21=5)

The boundary conditions are
When §= + 7
Mg= Mrg = Qg = Nrg = Ng = 0

(46)

The Eigenfunction Expansion of the Displacement Functions and
Stress Function

The analytic function & could be expanded in series
= ; M _ ) M Xy
Pox+igy=F Beicd) = Z (BAich) y/ (Casps+ £ Sinps) (47)
Harmonic function F could also be expanded in series

o
= f,rA [Kj,ﬂc"‘w’{”)a-‘- Li:i’&n(,{+l)9] (48)

Functions fo , F ¢ and F2 should satisfy the eq. (45), (41),(42)
respectively. These equations are Helmholtz's equations. Their
solutions could be expressed in modified Bessel functions. With
the condition of finite energy, we must drop out the modified
Bessel functions of second kind. The functions fo , F+¢ and F2
could then be expressed in modified Bessel functions of first
kind only.

Similar to the bending cracked plate problem, substituting the
expansion f, F and ¥ into the boundary conditions, the linear
equations whose unknowns are the coefficients of the expansions
could be established. From these equations, the

relations between the coefficients in the eigenfunction expan-
sion could be found. With the functions f, F and ¢ known, the
generalized displacements and stesses could be obtained.

REMARKS

1. Similar to the Williams' expansion in plane fracture problem,
the general solutions of the stress-strain fields including Mode
I, Mode II and Mode III at the crack tip for Reissner's plate
and shell are given.

2. The general solutions for stress-strain fields at the crack
tip in plates and shells provide a better mechanical foundation
for calculation of stress intensity factors, The analytical me-
thods for plane fracture problem could be adapted for the analy-
ses of cracked plates and shells.
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