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ABSTRACT

This paper discusses three finite element approaches in solving a two-di-
mensional linear elasto-static problem with fixed boundary conditions and
derivative singularity U(r*‘l) near a corner (O<ReA<l). This singularity
occurs in the stress analysis of a layered medium under compressive load.

The first approach uses the regular bilinear isoparametric quadrilateral
element (Zienkiewicz, 1977). The second uses Akin's special four-node quad-—
rilateral element (Akin, 1976) and the third is based on a generalized
Benzley's enriched element (Benzley, 1974). The fixed-free corner stress in-—
tensity factors are given and comparison of their computational results is
presented.
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INTRODUCTION

It is well known that Williams solution (Williams, 1952) has been used as

an asymptotic solution for boundary value problems with corners at fixed-

free edges (Aksentian, 1967; Benthem & Minderhoud, 1972; Zak, 1964).

Recently, his result has also been used for analyses of a V-notched plate

and a strip with fixed-free corners (Lin & Tong, 1980; Stern & Soni, 1976;
Nikooyeh & Robinson, 1981). Finite element approaches have been ?roposed

for fracture mechanics problems where derivative singularity O(r~ /2) exist.
However, the nature of the problem addressed here is related to that of the
classical fracture problem except that the boundary condition is mixed, that
is, one side of the corner is subjected to a traction free and the other to a
zero-displacement boundary condition. This type of singularity appears in

the stress analysis of a layered medium under compression. It has implica-
tions in the fracture or failure analysis of the composites. Three approaches
were used in studying the mixed problem. . The first approach uses the regu-
lar bilinear isoparametric quadrilateral element (Zienkiewicz, 1977). The
second uses Akin's special four-node quadrilateral element (Akin, 1976), and
the third is based on a generalized Benzley's enriched element (Benzley, 1974).
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In developing the techniques for solution, a slab with one end subject to a and

uniform pressure, and another end fixed, is chosen as an example (see Fig. 1). KII c Sinzu 4 sin2\m

The fixed-free corner stress intensity factors may be determined indirectly K = K = A" 3 2 (6)
I cos a — cos Aa — (3=40+))

or directly from the second approach and third approach and will be compared

with an available solution (Stern & Soni, 1976; Gupta, 1975). . i
substituting (2) into (5), we obtain

THE FIXED-FREE CORNER STRESS INTENSITY FACTORS i
! Ky = 4(l-0)r A
In the following we assume that the Williams' solution (Williams, 1952) is . (7)
applicable to the analysis of the corner of a slab (or a strip). KII = 4(1-0)r C
Consider a slab (or strip) with fixed-free.corners as shown in Fig. 1. The . X .
boundary conditions are assumed to be which describe the singularities at the fixed-free corner.
h=o0, - i~ -0 @ ] =0 ELEMENT FORMULATION
r'o=0 6'0=0 (1)
6 = a, . | -0 . l -0 In the present paper, the type of elements used are (1) the regular bilinear
0! o=x r0'H=a isoparametric quadrilateral element (Zienkiewicz, 1977), (2) Akin's special

where r,8 are the polar coordinates; u_, u, are the displacement components fOUF"HOde quadrilateral element (Akin, 1976), and (3) the generalized Benzley's
and 0, T are the stress components. enriched element (Benzley, 1974). Both (2) and (3) are combined with (1) in
0 ro the methods of solution discussed hereafter. Some details of the elements

Using Williams' solution, through the transformation of coordinates, we obtain are described below.

the stresses and displacements near the corner as follows:
1) Regular Bilinear Isoparametric Quadrilateral Element

o =ar’ LA (4o-1+2) cos (A-L) 8= (A-1) cos (A=3) 0 ]4+C [ (5-40+1) sin(A-1)6
X —(A-1)sin(A=3)0]} The displacements u, are defined as (Fig. 2)

L
Lf u. (i =1,2) (8)

A =
i k=1 k ik

o =Ar _l{A[(5—40—A)cos(k—L)0+(X—l)cos(X—})ﬂ]+C[(40—1—X)sin(x-l)6
y +(A-1)sin(A-3)0]}

u

where f ~are shape functions given by

t =M A (3=40-2) sin(A-1)6+(A-1) sin(A=3) 8 ]+C[ (3-4o+A)cos (A-1)0 k
© —(A=1)cos(A=-3)61} L _
(2) fl A (1-£) (1-n)
_ 1
A f2 =% (1+£) (1-n)
u = ;—-{A(—Asin(l—l)ﬂsinﬁ)+C[(3—Qu)sin\0+xcos(X—l)usinﬁ]} 9)
JA ) £,y = %7(1+&)(1+n)
v = 5— {A[3-40)sinr0=-Acos(A-1)Usin0]+C(-Asin(A-1)6sind) } )
fA = Z’(l—ﬁ)(l+n)
where | is the shear modulus; o = v for a plane strain problem, o = v/(1+v)

for a plane stress problem where v is the Poisson ratio and A is the eigen- and ug are the nodal values of ug.

value of the following equation:

9 2 2) Akin's Four-Node Special Element
sinia = 4(1-0)” _ sin \2 )
3-40 3-40 To combine with the regular isoparametric element, we need to change the

) . o . local coordinates s and t of Akin's element to the isoparametric coordinates
In (2) and (3) A and C are undeteerned cOfolClEntS.. Equation (4) has a ; and n by the following expressions
pair of real roots, other roots being complex. In this paper we chose only

a positive real root and assumed that it is an adequate approximation. 1 c
s = = (1+4)
2
The fixed-free corner stress intensity factors are defined as (10)
1
t = = (14n)
K. = lim rl—) n _ lim xl—AU | 2
1 0 Tulh=0 x>0 y'y=0
(5) Thus, the displacements in this element are assumed as (Fig. 2)
K _ lim I’l—)\ 7 I - lim xl-)\ T i N _ )
II r>0 ro'o0=0 x>0 xy'y=0 uy =k£lNk Ui (i =1,2) (11)
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where Ny are the shape functions of the special element given by

1 f
Nk = 6jk(l - E) + 'k (12)
R
where R = (l—f~)l_k, and j is the singular node number, others are not; 6jk
is the Kronecker delta. Here f, are the same as in (9. A is the constant
given by (4) and related to the Poisson's ratio v of the material of the
element, and the angle between the fixed and free edges of the cormer. In

the development of this technique, we found that Akin's standard element is
just the isoparametric bilinear quadrilateral element defined by (8). As
was discussed by Akin, the element defined by (11) is compatible with those
adjoining isoparametric elements defined by (9) and satisfies the following
equations:

PN -1
k=1 k %
oN
4 k
s ) 13
k-laL ’ ( )
y ON
=== 0.
k=] on

For this element we use the following relations

L =
= i = 2 4
X kzlfk Xk (i 1,2) (14)

to establish the coordinates transformation between the global coordinates

and the isoparametric local coordinates, where xj, are the nodal values of Xy

3) Generalized Benzley's Enriched Element

Similar to the derivation of Benzley's enriched element, we define the dis-
placements in the element as (see Fig. 2)

N
It

ui =k-1 kwik+

L -
Al (ST £0,, ] (= 1,2) (15)

where fy are the same as that in (9), and A is given in (2). _Qi(fye)
derived from (3) gives the proper singularity at the cornmer. Qji are the
nodal values of Qj(r,t%). For the fixed-free corner,

Q, (r,) =g (D'
1 L (16)

Q, (e, ) = :;2(«')r\
where 1
g1 (0)= T[—\sin(%—l)HsinU+(3—40)KsinAﬁ+XKcos(x—l)wsinﬂl
and i a7)
gz(”)= I[—AKsin(A-l)Usin0+(3—40)sinXH—Acos(X—l)WSinH]
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where K is a constant defined by (6) and A is obtained from (4).
COMPARISON OF THE COMPUTATIONAL RESULTS

Using the foregoing three approaches , we analyzed a slab with the length

to width ratio of 0.5. From the symmetry consideration, only one half of the
slab was subjected to stress analysis and the same 64 element grid used in
three approaches is shown in Fig. 3. Type A element designates the
regular element in the first approach, the special element in the second and
the enriched element in the third approach, respectively; other elements are
the regular elements. When integration of the element stiffness matrix are
performed, (3 x 3) and (7 x 7) Gauss quadrature were used for type A element
in the second and third approach, respectively. The computational results

of the normal and the shear stress distribution at the fixed edge and the
displacement in the x-direction at the free edge by three approaches are

shown in Figs. 4-6. It is observed that in the first approach we need refined
meshes to obtain the stress distribution of a reasonable accuracy near the
corner. The second approach gives results in the stress distribution very
close to those given by G. P. Gupta (Gupta, 1975). This evidence lends sup-
port to Gupta's approach. The third approach provides directly an approximate
value of the coefficient A. From (6) and (12) we can obtain an asymptotic
stress distribution, as shown by the triangular points in Figs. 4 and 5, which
lie below the results obtained from the second approach. Since this element
has an additional term, it is incompatible with the adjoining standard ele-—
ments. To improve the compatibility we used two types of transition elements
to obtain (1) the displacement continuity and (2) both the displacement and
the stress continuity at the interface of the adjoining elements. 1In both
cases, the singularity exhibited by the computational results shows degeneracy
(1A|-<l). Otherwise, the results are subjected to the effect of the size of
the element, the larger the size the larger is the value of A.

From the numerical results of the stress by the second approach and using (6)
and (7), we can indirectly calculate the fixed-free corner stress intensity
factors. Table I shows some numerical results of the fixed-free corner stress
intensity factor of the slab and the strip for two length-to-width ratios.
For L/H = 0.5, 160 grid was used whereas for L/H = 0.25, 96 grid was used.
The Poisson's ratio was 0.3. These results can be compared with Gupta's
results which appeared in Stern and Soni (1976). A discrepancy of less than
5% was found. Notice that in Gupta's paper both ends were fixed, whereas

in this paper the upper end is subjected to a uniform pressure. To compare
results, L/H = 0.5 of this paper corresponds to L/H = 1.0 in Stern and Soni
(1976).

R
TABLE I Fixed-Free Corner Stress Intensity Factor KI/Phl

I L L
= = 0.5 = = 025
Ph - H a
Slab 0.7879 0.7651
Strip 0.7636 0.7414
CONCLUSION

One way to describe the singularities of a fixed-free corner is to use the
fizxed-free corner stress intensity factors. The second approach described
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gives good results in the stress distribution and the fixed-free corner stress
intensity factors. The method is general and easy to program. The third
method, although used successfully in calculating the stress intensity factor
for a crack, has obvious disadvantages: the element is incompatible with

the adjoining standard elements. Also, observing from the comparison of
stress distribution (Figs. 4-5) the accuracy of this approach appears to be
insufficient.
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