NON-STATIONARY PROBLEMS OF LINEAR
FRACTURE MECHANICS BY THE BOUNDARY
ELEMENT METHOD

J. Balas, J. Sladek and V. Sladek

Institute of Construction and Architecture, Slovak Academy of Sciences, 842 20 Bratislava,
Czechoslovakia

ABSTRACT

This work investigates the dynamic stress intensity factor for

a crack in an infinite elastic medium. TwoO classes of special
problems of thermoelasticity are considered. These are the prob-
lems of classical elastodynamics and quasi-static problems of un-
coupled thermoelasticity. The boundary value problems in these
fields are recasted in an integral form. The boundary integro-
differential equations are solved by the boundary element method
in the Laplace transformed domain. The method is illustrated by
two numerical examples for harmonic and impact load in elastody-—
namics and harmonically varying temperature load in thermoelasti-

city.
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INTRODUCTION

The boundary integral equation method /BIEM/ appears to be an
efficient method of numerical calculation for many practical
problems in the field of engineering /Brebbia and Walker, 1980/.
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The investigation of the stress intensity factor /SIF/ in an in-
finitely extending elastic medium occurs often in linear fractu-
re mechanics. For dynamic SIF problem, the finite element method
/FEM/ and the finite difference method /FDM/ do not provide a
satisfactory solution because of the fact that an infinite medium
is represented by a finite size model. Even the construction of
special non-reflecting boundaries to be placed at the ends of

the mesh does not fully alleviate this problem. Difficulties of
this kind can be avoided by the boundary integro-differential
equation formulation /BIDEM/ of crack problems. The BIEM and
BIDEM in the Laplace transformed domain for general boundary va-
lue problems of thermoelasticity has been developed by the au-
thors /Sl&dek, V. and Slddek, J. 1983; Sl&dek, J. and V.Sl&dek,
1984a/. The numerical solution of the non-stationary problems
when the Laplace transform is employed essentially consists of
series of solutions to a static-like problem for a number of dis-
crete values of the transformed parameter p. The final solution

is obtained by a numerical inversion to the time domain.

FORMULATION OF THE PROBLEM

Consider a homogeneous, isotropic, perfectly elastic body occu-
pving the region V and bounded by the surface S. For this medium
the linearized equations of thermoelasticity /Nowacki, 1975/
hold

RU g+ (N B Ui + X = pli + 8, (n
18- qip, =- 2
Bk ~ X O ~ auyy % (2)
In these equation © = T - T, denotes the increase of tempera-

ture with respect to the natural state TO for which the stresses
and deformations are equal to zero; next, u, and Xi denote the
components of the displacement vector and the body vector res-
pectively. The function Q(X,t) describes the intensity of the
heat sources. The physical meaning of the coefficients in egs.
/1/ and /2/ is given elsewhere /Nowacki, 1975/. The dot denotes
the derivative with respect t¢ time. Egs. /1/ and /2/ represent
a system of equations for coupled problems of thermoelasticity.
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The Laplace transform of egs. /1l/ and /2/ becomes

RTiwk H(N+ 1) Ty g + Xi = pp?T; + VB, (3)

é.kk‘%é_upak,k='% (4)

where p is Laplace transform parameter.

In the case of steady state problems of thermoelasticity the dis-

placement vector and temperature vary harmonically in time

- * o -iwt - e —jwt
Ui (X,t) =uj(X,w)e,  8i(x.1)=8j(X,w)e (5)
Inserting /5/ into egs. /1/ and /2/ one can see that the problem
of evaluating the amplitudes u1 and 8" is equivalent to that of
evaluating the Laplace transforms ﬁi and & , bearing in mind the

change p — -iWw .

In what follows we shall be interested in two special classes

of problems.

Classical Elastodynamics

Classical dynamic elasticity is based on the assumption that the
motion may be treated as adiabatic. The equations of motions are
reduced /Nowacki, 1975/ to

Bujkk *+ (Rg+ B) Uy i + Xi = pu; (6)

where Ag= A+YaX referes to the adiabatic state, while W ,\,Y
and @ to the isothermal state.

It is well known that a system of partial differential equations
along with the appropriate boundary and initial conditions may

be recast in an integral form. The general formulation and solu-
tion of the transient elastodynamic problem by combining the

BIEM with the Laplace transform with respect to time was done

by Cruse and Rizzo /1968/ and Cruse /1968/. The BIEM formulation
of the boundary value problem for a crack in an infinite body
does not lead to a unique treatment. For the boundary value prob-

lems of fracture mechanics there has been developed the formula-
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tion through the BIDE /Sl&dek, V. and J. Slddek, 1984; 1983/.

Let us consider a crack in an infinite elastic medium under the
load t; (7, tﬂs.- -ty (M., t‘S& Then the Laplace transform of
the dlsplacement fleld can be calculated /Sl&4dek, V. and J. S1ld4-
dek, 1983; 1984; slddek, J. and V. Slddek, 1984b/ by

ka.p)--fma(ﬁ.pﬁik(ﬁ-zp)dsn (7)
S¢r
where the crack opening displacements Au
by the BIDE

(n,p) are determined

Cipjr nﬁ(z)[ciskt inrsi altukj (- C,p)dSq +
Ser
*opszﬁi(ﬁ.p)nr(ﬁ)Uij(ﬁ-E.p)dSn]'?F(f.p) (8)
Ser
where
B%,s; = [ne ()8~ ns ()3 | ATi(R.p) , Bk = d/3m,
The kernels Gik(f,p) and Tik(f,p) represent the fundamental dis-

placements and traction vectors respectively /Slddek, V. and
J. Sl&dek, 1983; 1984/.

Quasi-static Problem of Uncoupled Thermoelasticity

Neglecting the coupling term aﬁk K in /2/ one obtains the un-

’
coupled set of equations. In what follows we shall consider har-
monically varying fields. Then the amplitudes follow the gover-

ning equations
BUkk H(N* ) Ui * X{ =-p wldj + Y6 (9)

. wor.. Q
Oy ti 0O =- 3¢ (10)

As the heat conduction process is markedly slower than the elas-
tic wave propagation, the characteristic frequency,w‘=‘)tla2 ¥
for thermal processes is much smaller than that of elastic pro-
cesses W,;=C,/a where c5 =ﬁﬂ5is the propagation velocity of the

shear wave (S) and a is a characteristic length of the problem.
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For instance, for iron and aQ ~lcm: wy~017s", wz**310554.

In order that the characteristic freguencies W and wpcould be
comparable the length of a crack in the infinite body should be
about 60 A. Such small distances are typical for microscopic
world where continuum mechanics is not valid. That is why the
inertia terms in eg. /9/ may be omitted in problems with a mac-—
roscopic crack under a harmonically varying thermal load. The
problem is considered as gquasi-static one. The boundary value

problem

GD]g "0 8D | gm0t e w et an)

for a crack in an infinite body leads to the solution of the
BIDE for the heat flux q (f,w) /Sladek, V. and J. Slddek, 1983;
S14dek, J. and V. Sl&dek, 1984a/

[a w87 widsy - 507 Cw), re[T-C] (12)

and thgrBIDE for crack opening displacements
Cipjr Ciskt “*(E)j A Uy (F)dSy = YO (T w) -
—vh(ng,apj 67, (X, w) Uy (F) dVy (13)

where the temperature gradients in the body are given by
» = Ukad
o (X, w) = Zqu*(n.w)en(r.w)ds“ (14)

% SEr 1% U
Fundamental solutions Uk' , 8 and @ﬁ may be found elsewhere
/Sl4dek, V. and J. Sldédek, 1983/.

NUMERICAL EXAMPLES

Example 1l: Consider an infinitely extending linear elastic me-
dium with a penny-shaped crack under the uniform loading over
all the crack surface and pointing at opposite to the normal
direction, t} (M,t) = 6 ,5q(t). In the case of a flat crack
(n’(n) = —5 ) the normal and tangential components of the
crack openlng dlsplacement in /8/ are decoupled. As we are in-
terested in the calculation of the stress intensity factor KI,
the solution of the BIDE for Aﬁ3 (M,p) is sufficient. Making
use the BEM the BIDE /8/ for Al, are converted into a system
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of algebraic equations for unknown crack opening displacements

in nodal points Aﬁ?

N-1
Z[(AGS“—AGE)(Q”“+P°°)+AG§R°°]=a(p), (@=12......,N) (15)
b=1
where T
Qb°=—2”s"3[gqcosnp-n(g)]E(s)n(g)dgdap
00

E(5)=XZ(U3 +5U, +U,) -4p2U, (N +2p) Us

2 1/2
s =[§q‘n2(§)‘ 2§q11(§)cosnp] , o MCE) =My + (M.~ M)E
P™=2pp*(x * 21)a H%U‘ (E)(Mpuy =~ M) dE Ao

1 O(_)_U_i
R™ = 2pp(A+ ZM)GI[ s N(E)(Mpsy - M) dEAY (16)
00

Symbols Ul’ U2, U3, U4 are defined in fundamental solutions, and
a stands for the radius of the crack. The nodal points 7, and
L, are chosen on the radius of the crack.

The stress intensity factor KI is calculated by

K. = pi2n Auz(a -=&t)
1

7

4(1-v) € )

where v is Poisson ratio. The dimensionless SIF fI is defined

as the ratio of K; and Kitat, i.e. £f; = KIﬁf /2q ld . For harmo-
“-iwt

nically varying load g(t) = ge the time dependence of K

I
is given by

K, =K. Wt = 2q E f‘;e-iwt =2q Elfde_iwu-s) (18)
where W8 stands for the phase angle
x
6=tg" (im_ﬁi) (19)
2279 TReftyT)

From the peaks in Fig. 1 a resonant effect for S-wave is seen.
Figure 2 shows the dependence of the phase angle wd on the di-
mensionless parameter wal/C; , where S is the propagation velo-
city of the pressure (P) wave.

The transient response of a penny-shaped crack to impact load
is illustrated in Fig.3. The numerical Laplace inversion accor-
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ding to Manolis and Beskos /1981/ has been employed.
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Fig. 1. Normal SIF versus fre- Fig. 2. Phase shift versus
quency for a penny-sha- frequency for a pen-
ped crack ny-shaped crack

Example 2: In this example the geometry of the problem is the
same as that in Example 1. Only the temperature loading on the
crack surfaces is assumed in the form /11/ for 6"(1-].1.0)-6,-

- const . For a flat crack egs. /12/ and /14/ take place and eq.
/13/ becomes

Ic - ., - =
JAJ3.Q(ﬁ'm) —r%E(r)dS“ =Y0- 'YJ'e, i (x (WX 2K0K3d5+ A ak) Uik( x-C )de (20)
Ser v

The BIDE /12/ and /20/ are solved by the BEM in the same way as
in Example 1.

The magnitude of the dimensionless SIF fI—KI(w) /KI(O) and pha-
se angle wd as functions of the dimensionless parameter waz/w
are shown in Fig. 4. Material parameters for iron have been

used: B = A= 7.9 104 MPa, the coefficient of linear thermal
expansion 4 = 1.67 107> deg”l, ¥ = (3\ + 2u)a; , and the co-

; =5
efficient of temperature conduction = 1.7 10 mz/s.
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Fig. 3 Dynamic SIF as a func- Fig. 4. Normal SIF ond phase
tion of time for normal angle versus frequen-
impact on a penny-shaped cy for a penny-shaped
crack crack under thermal

load
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