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ABSTRACT

Most of the work on near-tip analysis are based on the assumption
that the hardening of the material is isotropic. However, for
most of engineering materials, which is isotropic in its virginal
state the hardening is anisotropic with Bauschinger effect. In
this paper the constitutive law for anisotropic hardening sug-
gested by Kadaschevich and Novozhilov (1958) is used to obtain
the near-tip fields for plane-stress mode-I steady crack growth,
with the plastic reloading zone being considered. The numerical
results are compared with those of Amazigo and Hutchinson (1977)
for linear isotropic-hardening material with the reloading zone
being neglected.
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INTRODUCTION

Most of the work on near-tip analysis of hardening materials are
based on the assumption that the hardening is isotropic. For ex-
ample, Amazigo and Hutchinson (1977) obtained the singularity
fields at the tip of a steadily growing crack, with the plastic
reloading along the flank behind the crack tip being neglected.
For most of engineering materials the hardening is anisotropic
with Bauschinger effect. It was pointed by Xie and Hwang (1983)
for mode~ IL crack in power-law hardening material and by Zhang's
and Hwang (1983) for plane-strain mode-I crack that the Bauschinge
effect has a nonneglible effect on the near-tip fields for growini
cracks. In this paper the Bauschinger effect is considered in tk
near-tip analysis of plane-stress mode-I steady crack growth, base
on the constitutive law for anisotropic hardening suggested by
Kadaschevich and Novozhilov (1958), with the plastic reloading
zone being considered, Comparison of the numerical results with
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those of Amazigo and Hutchinson (1977) confirmed the nonneglible the crack-tip. Denote by § the stress tensor, £ the strain ten-
role of the Bauschinger effect in near-tip fields for growing i . ) . ~
cracks. sor and é:g , L =E§ their time-rates. Then the components

of 4 can be expressed in terms of the rate of stress function ¢
BASIC EQUATIONS AND BOUNDARY CONDITIONS

zl . 22
3¢ 3
The constitutive equations for linear anisotropic hardening mate- /S,F—‘—z‘ A = 39; A —_-._L (6)
rial, as suggested by Kadaschevich and Novozhilov (1958) can be 3G ., 22 Jxp , 2 A%, 20X,

written in the form or, in polar coordinates (r,9) centered at the tip.

P { co ©
&= zheg % G

1 g EN &9 1 3¢ '
(1) A=432,L L 4 =22 2 (6")

r T der 66 drx , 7re or\r de

Sk

And the components of f’; can be expressed in terms of components
of velocity vector

oL, = 29 g”. (2)
) 7 v
Here dt'j denote stresses corresponding to the center of the yield- “ox, 22 oL, 122 ‘ox, 3X,
ing surface, "p'" plastic strain components, superdot ".'" the time-

. or, in polar coordinates,
derivative d/dt, supercirclet "o" active stress components ! b

g ' e 5 v oU. Y 1
( 0;; = 0;; — ot;; ), star "*" the deviator components ( G 5%= 0..~ — IV; _ 1(°% _ 4,1 9% - ,
tlo { 4 i i < 5" ar Eo Flig +1T,_) ) &ro_z r o8 Tir °F 9) 7')
-3‘.0-“ J;’ ), and O; the equivalent active stress,
Referring to the results for isotropic hardening(B8= 1) of Amazigo
. 1 and Hutchinson (1977), we shall look for plane-stress solutions
o o 2
o= ( —;— Gt 0":; (3) (A33= 0, 033= 0) corresponding to dominant singularity
s 1
h and g are material constants, namely (f:-Ao r5+ fo(e) (8)
43,1 1 L2 (L_L
h p(et t-:), 9 /—B(Etﬂ (4) .. il .
where E denotes Young's modulus, E; tangent modulus following f/‘,\u, ;T } = A, T { wa(e) , t o) } (9)
yield and B8 parameter related to anisotropy of hardening with
the extreme value B = 1 for isotropic hardening and 8 = 0O for
ideal Bauschinger effect. Here and hereafter sum convention is 5 é _ s °
adopted for repeating indices, with the Latin indices i, j, ... { T’ G 7 0;.:‘ }—A,r {ZMJ@), 2 (8), S,-J-(G)} (10)
ranging over 1, 2, 3 and Greek indices A , w , ... over 1, 2 ]
only. The time-derivative of eq. (3) gives
S
o 3 5% o ° {U;,UZ =A,r{g°(e),h°(e)} (11)
Q=7 % %/ % }
Replacing 5}’ by o - 2g ';- anrd making use of eqs. (1) and (4), S+1
we can reduce the 'above ea. to the form u, , u;} =A.r {60(9)) H,(G)} (12)
. 3 O 4 o o
=2 poa’o./q (5) _ o _ 5
e 2 gy é‘.j—- A F Iﬁ’.l.(a) , £¢./._. A, F E{/.(G) (13)

Let x be the moving cartesian coordinates with origin at
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where u, , u; are displacement components, A, is an amplitude
factor. The exponent s and the functions of 6 appearing in the
right sides of egqs. (8)-(13) are to be determined. From (3) and
(5), we have

N /2
z,w):{-i—s‘-l-(e) S,-;'(G)} . with  35,(8)==§,,(8)

° (14)
+ (a)=%p5m(e) tr0 (0)/ Z°(0)
Plastic incompressibility requires
Es3(8)=—E,\(8)+ (1-2V)Za(8)/E
(15)
\/-33{6)=—11—’“(9)+(1—2V) tra(6)/E
With (8),(9), eqs (6') lead to
t,80=(st1) fce0+ f6),
(16)
L R /7
1,000 =S(st1)f o), < (80)= sflce)
and with (11) and (13), egs (7) lead to
Y, (60 =5 c056 g,(8)—5iné J/(8) .
® 7
V¥,(0)=5 sine h,(6)+ cose h,(68) . (17)

7 ’ .
1{72(9)=Z’_ ( (grerts hy(8))cos8+(sg (8)=h,(6))S54n6 }

where '=d/de .
Identify the time parameter t with the increase of crack length,
so that in steady state we have for any scalar or tensor fields

« D

* d 3
= — = - = (18)
( ) dé( ) ax,( )
Applied to stress tensor & and strain tensor £ , (18) gives, re-
spectively,
5ine 5\ ,(8) =5 cos85,,(8)+ t,,(0) (19)
SiNG Eppy(8) = S €OSO Ejpy(0) + W, (8) (20)

Some of the equations in (19) and (20) are integrable after sub-
stituting (16) and (17) into them, and lead to
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$.2(8) = (s+1) sine f,(8) + cose f,/(8) ,

Z,,(8) =—(s+1) cose f,(6)t sin6 £,(6) , (21)
Eqq(8) =~ 4,(8)

The remaining equations in (19) and (20) are
Sin® Z,,(6) = S cos@ Z,(6)+ ¢,,(6) (22)
Sine E],(6) = S C0SO E 3(6)+ Yj3(0) (23)
Sin@ E,,(6) = S COSB E,,(6)+ ¥,,(6) (24)

From (9), (10), (13) and Hooke's law, the constitutive eq. (1)is
reduced to

i ., - A 45 °
Yol@)= 258, fo)-F ¢ 01 + 2 t©)§ (0)/276) (25)

where v — Poisson's ratio, 4 = 1 for plastic loading, and A= 0
for elastic response, tao () can be obtained by transformation
from (16), ¥,e (8) are substituted from (17) and
_ fiid i pid vV _ 26

SM(’e)_.(uzg 5 )Z,.0) (31‘2,?3)2,,5,9“{;«; zyE,\wla) (26)
where Z,2(6), Z22 (6) and E,, (8) are substituted from (21). Egs.
(22)—(25) are the six governing equations for the six unknown
functions £,(8), 8+(8), ho(8),Zus (8), E(2(8) and Ej;2(9) for
plastic zone (4=1) as well as for unloading zone (#=0). The
functions Go.(6), Ho(®) for displacements can be determined throug
the following relations obtained from (11), (12) and (18):

. £

SANG G, (6) = (S+1) cos e)+ 6
. G 6 G,(8)+ §,(6) 27
5An@ HJ(8) = (S+1)c0sO H,(6) + ho(6)

The crack-tip geometry is shown in Fig. 1. Since for hardening
materials stresses and strains should be continuous across bound-
ary I between neighboring zones, we have the contiguity condition

(f@] .= [{@] =[4wl.=[hto)] =0 (28)

where [P]r denotes the jump of P across I .
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Fig. 1. Crack-tip geometry.

X,

At unloading boundary an additional contiguity condition should
be added to (28):
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* 0 . ~° _ —
()E,(Gf,‘i'o)_()'e(eP 0) =0 (29)
The location of reloading boundary [p is determined from
° — 7° for same x (30)
Ty (%) |y = 07 (Xa) [, 2
By symmetry the boundary conditions at 8= 0 are

fltoy=0 , g,t0) =0 , h,to)=c0 (31)
The traction-free conditions at 8 =77 requires
/
f°(7r)=f°(’n’)= o (32)

In the unloading zone eq. (25) (withM=0) can be intergrated in
closed form. The basic equations are integrated numerically over
the loading and reloading plastic zones. The normalizing condi-
tion is taken as 5° (0)=1, which coincides with the normalizing
condition in the work of Amazigo and Hutchinson (1977) in case of
isotropic hardening (B=1). The values of f£f'"(0) and the exponent
of singularity s are assumed to start the numerical integration
from € =0, and the values of these two parameters are refined by
iteration until the boundary condicions (33) at & =7 are satisfied
with a prescribed accuracy.

NUMERICAL RESULTS AND DISCUSSIONS

The numerical results exhibit no dependence on the
vV . Fig.2 shows the variation of the singularity
the tangent modulus ratio o =E;/E and the parameter
anisotropy. The angles 6p and 65 subtended by the
reloading plastic zone are tabulated in Tables 1 an
tures of the near-tip zones are shown in Fig.3, in
points "x" and '"o" denote computed cases which turn
without reloading zone, respectively. From Fig.3 i
the neglect of the reloading zone by Amazigo and Hu
is justified except for the case of very low harden
small & ). For « =0.01 the angular distribution of s
nents is shown in Fig.4(a),(b) with B8 as parameters
plastic strain-rate components is shown in Fig.5.
for the case of isotropic hardening (B=1) agree qui
those of Amazigo and Hutchinson (1977). These figu
significant role of the plastic anisotropic hardeni

TABLE 1 Values of 6

Poisson's ratio
exponent s with
B of hardening
loading and the
d 2. The struc-
which the

out with and

t follows that
tchinson (1977)
ing (i.e. for
tress compo-

, and that of
The results

te well with
res show the

ng.

P
B 1 0.9 0.7 0.5 0.3 0.1
0.75 | 1.4099 1.4522 1.5921 1.9818 3.1086 3.1368
0.25 | 1.3714 1.4086 1.5319 1.9233 3.0192 3.1232
0.10 | 1.2854 1.3216 1.4438 1.8624 3.0038 3.1187
0.01 | 1.0662 1.1088 1.2524 1.7846 3.0303 3.1228
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TABLE 2 Values of 6
B 1 0.9 0.7 0.5 0.3 0.1
0.75 0 0 0 0 0 0
0.25 0 0 0 0 0.215x1072 0
0.10 0 0 0 0 0.155%1071 0
0.10 |0.552:10™° 0.813:10° 0.211x107° 0.397+1072 0.515x10"1 o.896x10-3
REFERENCES

Amazigo, J. C., and J. W. Hutchinson (1977). Crack-tip fields in steady crac
growth with linear strain-hardening. J. Mech, Phys. Solids, 25, 2.

Kadaschevich, U. I., and V. V. Novozhilov (1958). Theory of plasticity with
consideration of residual micro-stresses. Prikladnaia Mat. i Mekh. s 22

Xie, H. C., and K. C. Hwang (1983). Power-law anisotropic hardening effect
on mode- M crack growth. Proceedings of ICF Beijing Symposium on Fracture
Mechanics, 258-266,

Zhang, R, F., Zhang, X. T., and K. C. Hwang (1983). Near-tip fields for
plane-strain mode-1 steady crack growth in linear hardening material with
Bauschinger effect. Proceedings of ICF Beijing Symposium on Fracture Me—
chanics, 283-290.

0 /.0
0.8} . .
-0.14 r ‘ °
0.6 |
o 4 | °
-0:24 0.4 r
[
S o /’ * I\ o ° o
0.2 F / \
; \
. oo /o N e o o
0 =% ——edpepalc T
0 0.2 04 06 08 /0
B
Fig. 3. Structure of the near-tip
zone ("'x" denotes the case
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Fig. 2. Variation of singularity
exponent s with o and B.
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Fig. 4(a).
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Fig. 4(b). Angular distribution of

stress camponent X e and
active equivalent stress
Z° for « =0.01 and dif-
ferent 3 .

Fig. 5. Angular distribution of plastic strain-
rate camponents & ¥y , o Vs » A Ve

for o = 0.01 and different B . (The
right-side ordinate scale for B = 0.1).


User
Rettangolo


