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ABSTRACT

The problem of crack propagatio» through an elastic material,
containing many arbitrary located microcracks, is examined,
Mathematically, the problem is reduced to the system of singu-
lar integral equations and its solution is obtained by using
the method of a small parameter, The change of stress intensi~
ty factor and the initial propagation direction of a macro-
crack is obtained for different orientations of microcracks.
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The problem of interaction of a number of cracks in a solid
body is one of the topical problems of fracture mechanics.
When materials, especially heterogeneous ones, undergo dis-
perse or volume fracture, the stage of accumulation of smell
defects is prevalent in the lifetime of a specimen or struc-
ture (Kuksenko, TamuZs, I98I). Stochastic models of defect ac-—
cumulation (Bolotin,IQéI; Tamu¥s,1982) are constructed so that
the interaction of damages is disregarded. It is apparent that
interaction of cracks affects, at least, the final stage of
fracture, calling forth coalescence of small cracks and facil-
itating {or hindering) propagation of a macrocrack through the
field of microdefects, The account of this phenomenon is of
prime importance for correct evaluation of crack resistance

of materials having small cracks (for instance, ceramics) and
it can also be applied to geophysical problems,

In the plane case, one of the most effective methods of sol-
ving the problem of a multitude of cracks is a method of singu-—
lar integral equations (Muskhelishvili, I962). The method is
based on construction of a complex potential by means of su-
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perposition, If the complex potential of an elastic plane prob-
lem provides continuity of displacement everywhere, except the
crack line, then naturally superposition of similar poten-
tials will define the field of displacements with discontinui-
ties (unknown for the moment) in places of cracks, All the
discontinuities of displacements, however, are interrelated
and can be found by solving a system of singular integral
equations, obtained by satisfying boundary conditions for all
crack lines, Such a system of singular integral equations is
given by Panasyuk, Savruk, Datsishin (I976). Yet, an approxi-
mate solution of the system was obtained with sufficient effi-
ciency only for cracks placed greatly apart from one another,

The present paper examines a case when one crack is much great-
er than the others, This means that here we shall consider the
above formulated physical problem of macrocrack propagation
through a damaged material,

We shall examine a plane problem of deformation of an infinite
body having a crack of length 2 !_  and arbitrary distributed

N “microcracks, We shall assume that all the microcracks are
of length2{,<<?2! k= I... N (Fig. I). The x and ~coordinate
axes are chosen Telative to the macrocrack direction, while the
position of microcracks is defined by the coordinates of their
centres z and the slope angle &£, to the x -axis, For conve-
nience we shall also use a local system of coordinates x  and
Y (Fig. I) for each microcrack,

The problem is resolved by using the method of singular inte-
gral equations,

If a self-balanced load is spplied to crack surfaces, that is,
when boundary conditions take the form

F * T~ 3 —

G+ T, =6, -t =p,(x); lx s 4 k=01, N (69)
(a macrocrack is not yet singled out), then the system of inte-
g{al singulaer equations takes the form:
[t 5 i[g(t)K (tx)+guol, t)dx = T pa(x) @)
Ht'tre g.(t) ‘a¥e” the derivatives of displacement discontinuities
for the Kk -th crack (according to the formula

g'(x)= Qﬁtﬁ'ﬁ([“]"%vk])l .

M is the shear modulus, ¥ =3-4y for plane deformation, [w.]
and [V.]are the jumps of nomal and tangential displacements-
and K, , L, are regular nuclei whose expressions are given
by Panasyuk, Savruk, Datsishin (I976) (the bar denotes a com-
plex conjugate).

L

After regularization, using the conversion formulas for Cauchy-
type integralsa, the system T) takes the form

A -t p,(t)d.t (
= { ¢ x) +
e B Z b (3
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Here the indices of variables are omitted and the following
designations azc'? introduced:

|x\<£n ) n.,:‘l) N

) -y 1 { :
M, foaxk=- 245‘ __St/e;—x <r—Tn. T=Tae )M' ()
Ldne Lo, T 2 .
N (tx)= e,_ "l -7 [-— d EI e T ,_]d,
'x) 23 -l,. —2 (E' TM) 1
Tﬂk: L‘n‘[t - dn.\e L(d-"ﬂﬁ'“')] ’

where CLM is a distance of then =th and r -=th crack cen-
tres, ~ defines their relative location and 4, =4, 4«
defines their relative orientation,

Let us substitute the variables t = {,T in the integrals
and let * = [, x . Then Eq. (3) takes the form
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Subsequently we shall assume that l,\ = L 3 £ =I... NN and
seek a solution of the system (5) in the form of a series by
using a small parameter » = [/[

U 1 ) F ‘ - i P

g(L)=) 9o, o 4o @D=)Y,,(2L,)a (6)
For th{s:opurpose, we shall 'g}%pand all the functions ./ch ,/Vc‘,
Myosy Myos M, 3 Nne in terms of powers 4 :
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In expansion of expressions Ju\coand /\/.w in terms of O , the
values of the Cauchy-type integrals were used

) - Ty & u-2¢

W 5 We-zldy = x5 (2e-30 0 )20 ] 12l
It should be noted that the eéxpansion (7) is valid in the
case when the microcracks have no mutual intersections and
they do not intersect the macrocrack: z ¢% (Fig. I). Substi-
tution of (6) into jump expressions (5), taking into account
(7) and equating the indices at .gx" give a recurrent sequence
of formulas for calculation of 35 2
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Let us assume that a body with cracks is stretched to infini-
ty by forces 6, =p . Then p.= - ( I+e™). We note that
factor at o 4g ., =0, since the Integrals of the type
. éLq‘ummma)fg;, ng Neco (1)]dT =0

are éxpressed as integrals of an uneven function within the
range of (-I, +I). We shall calculate the second approximation
of the stress intensity factor at the tip of the main crack.
By using Eq. (8), we get

g‘c:_(z’) = gf{\ll(-*ﬁ_la g[g,,@)mc‘c (1)"’ gn (T)noxo(l)*'gwa.)mou*'gzy(t)hozi‘lrd’?9)
It is easy to prove that _SEg;(t)rr\ow(z)+g'.4tt)ncw(l)]dx =0
therefore in order to calculate g'u it is enough to know the
values g“‘,(r and ¢..(?) @ ( -zwa.)
a2 ()= ‘ A 7 - ’Q“H
AFE T [9“@"‘“'@)*Qcc(t)"m(f»l)]dt' = < L} (10>

=
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Calculation of the integrals in Eq. (7) and substitution of
all the found expressions into €9) and then into the relations
of the stress intensity factor (Panasyuk, Savruk, Datsishin,
1976) give:

Kl:al__"Kllrvz—::X?‘;‘;m’rehC,(_,)K gu(X) :: le;."ﬂquo[‘!—l‘) gc-(al) (II)
In such a way, we shall obtain a value of the second approxi-

mation of the stress intensity factor for an arbitrary micro-
crack in the form:

. . 5 ? - 2k o (Ue-u )eVZLnL‘_
K-k, :-P——”“{—‘—Lhe ——— = ~aEa) '
o Kot P -t JEEoq (mi-a)e
2 Uk roe
([ { + S i 1. —ehm—&-——u'—““%—‘
(T ANTI- (wew WeeZ A ] Jul-t Vas -

. 2ider,— — =20ty ~ B
_(Ux—uL)e H(u‘—ut)(z Z.T1)e {—-e ‘\
2 3, e 3 — + = ey
(wZz-1)" 20¢f—ff‘(u,:1) 2(@evINwz-1
where the designation U, = %} is used.
From (I2) we have the known particular cases of relative lo-
cation of two cracks with the assumption that the length of
one crack is much longer than that of the other, For instance,
if 4, =0 and Y. =0, that is, when a microcrack is located
straight ahead of the macrocrack, we shall get an expression
which agrees with the first two expansion terms of the exact
solution (Panasyuk, Savgug, Datsishin, I976)
= A «
z = pll A1 5 e i
Let us note that the second approximat on of the stress inten-
sity factor does not comprise expressions which take into ac-—
count interrelations of the microcracks. The second approxi-
mation of the stress intensity factor considers only inter-
action of the macrocrack with each microcrack. The formula
(I2) gives us a chance to calculate the influence of any mi-
crocrack on macrocrack propagation.

Let us examine a doubly-periodic system of microcracks, lo-
cated as shown in Fig, 2. We shall assume that all the micro-
cracks are oriented in one direction at an angle « to the
x -axis, The coordinates of the microcrack centres are ex-
pressed as X, =ln/t j 4y, =0lbm|s, where m , n =I,2...,
while 7 and S are some natural numbers, indicating how
many microcracks are located on the section of length ¢ in
x - and y -directions, respectively.

Let us determine now the propagation direction 6 of the
main crack with respect to orientation of the microcracks,
As a criterion we shall use, for instance, the criterion of
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I 1l stresses n, Sih, I96
maximum normal s rsr_?zré%fQan 3 , 1963)
B =2utcty —T—,?—J—
The ultimate load P related to the ultimate load po (for
the case of a single macrocrack without damages) is determined
from the formula —
P /Za

B = cos O (K- 3xgt93)

o
The graphs of the initial angle of crack growth € and the
relative values of the ultimate load p” as a function of ori-
entation of the microcracks are given in Figs. 3 and 4. At any
orientation of the microcrack field the ultimate load for a
damaged material is less than its initial strength.
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