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ABSTRACT

In elastic solids capable of sustaining couple stresses stress
intensity factors (SIFs) depend on three additional parameters
v, £/a and N, Vis Poisson's ratio,£1is a characteristic
length of the material, a 1is crack length and N is a number
representing the interaction of the microstructure with the
displacement field, After a discussion of the significance

of the limit £/a —» O, a specific crack problem is solved and
an 'effective' SIF (i.e., a closed—form expression for the

SIF in the limit £/a —> O) is obtained.
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INTRODUCTION

Fatigue tests (Peterson, 1953) show that the weakening effect
of stress concentrations is diminished as the specimen size

is reduced., In alternating bending fatigue tests, smaller

the specimen size, the higher is the fatigue l1imit, Thus,
reduction of specimen size seems to produce a tstiffening
effect'. Mindlin (1968) associated this effect with the
severe strain gradients that might occur across the specimen
due to the reduced size, He (Mindlin, 1962, 1968) extended
the classical elasticity theory by incorporating the gradients
of local rotation LI (where w = 1/2 curl u ;3 u = displace-

ment) in the strain energy density function. In this theory
the tensor wj,k is found to be associated with a couple

stress tensor my (couple per unit area) just as the strain
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tensor ek is associated with the usual stress tensor tik‘
The proportionality between wj K and my, gives rise to

14
additional elastic modulii. The ratio (say £2) of one of
these to the shear modulus has the dimensions of length
squared. Owing to the length scale £ the theory is capable of
encompassing the ‘'size effects' mentioned above. This ex-
tended theory is called couple stress theory. Similar and
other generalisations of the classical theory, incorporating
couple stresses and hyper-stresses of increasing complexity
and elusive physical reality, are available (Kroner, 1968;
Sridharan, 1980 Chap 1 p.2); their origins go back to Voight
and E. and F, Cosserat, Subsequently, in this paper, we shall
be concerned with another extension of the classical theory -
the well-known micropolar theory (Eringen, 1976) - which
includes the couple stress theory as a particular ‘extreme
case',

The stress concentration factor Sc for a circular hole

(radius a) in a transverse tension field, worked out on the

basis of couple stress theory (Mindlin and Tierstein, 1962),

is found to depend on £/a and Poisson's ratio (in classical
elasticity S_ has the constant value 3)., For £/a > O,

S, < 3. As £/a >0, S, —>3. As £/a increases S. decreases,

and for vanishingly small holes, the reduction in Sc is as
much as 30 to 40 per cent depending on Poisson's ratio.

Impressed by the enormous reductions in Sc that the couple

stresses can bring about, Sternberg and Muki (1967) investiga-
ted the singular stress concentrations at the tips of a
Griffith crack (length 2a) situated in a transverse tension
fielde They found out that (1) the ordinary and couple
stresses both have the 1/Yr singularity; (ii) the stress
environment at the crack-tips is controlled by two stress in-
tensity factors, one for the ordinary stresses and the other

for the couple stresses - K(l), K(2 respectively;

(ii1) K(l), k{2) are functions of, not only the load and
crack length, but also £/a and Poisson's ratio; and

(iv) unlike S.» the factor K(l) remains higher than its
classical value when £ /a > 0, and increases as £/a decreases;
in the limit £/a->0, k(1) shoots upto values 20 tO 32 per

cent more than the classical value, K 2) > 0 for —e/a > 0 ;
and vanishes as £ /a—>0 (Ejike, 1969; Paul and Sridharan,
1980 a).

A SIGNIFICANT LIMIT

Notice that K(l) does not attain its classical value as
£/a >0, This is not surprising to us = recall that the
strain energy does attain its classical value (Atkinson and
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Lappington, 1977) - in view of the fact that in this limit a
highest derivative term in a governing equation vanishes
signifying the emergence of boundary layer effects, Therefore
the limit £/a =0 does not represent a transition from couple

stress theory to classical theory., The limiting valuesof K(l)
are not applicable to continua which are incapable of sustai-
ning couple stresses (as the classical one is) but applicable
to those which can sustain couple stresses and yet have
intrinsic length scale (£) <4 a., It is only the later type
of continua that interest us, for, on physical grounds is
believed to be of the order of grain size (Mindlin, 1968;
Askar, 1972), Besides, in general, a continuum treatment is
valid only if the intrinsic length scale of the medium (£ )is
<< any physical linear dimension of the problem under consi-

deration (here a)., The limiting values of K 1 s therefore,
assume physical significance,

The result of Sternberg and Muki (1967) that the limits of

K(l) are 20 to 32 per cent higher than the respective classi-
cal values, is clearly unrealistic, A method of solution more
refined than the one used by these authors yields no better
resultsy the said limits now range from 18 to 30 per cent
(Atkinson and Lappington, 1977).

COUPLING NUMBER

Recently we (Paul and Sridharan, 1981) have considered the
Griffith crack problem on the basis of micropolar theory of
elasticity. This theory abandons the strain gradients, and
introduces gradients of a vector field (called microrotation
and assumed to be kinematically independent of u) in the
strain energy density function. 1In this theory, there appear
a few intrinsic length scales - but only one, say £, is rele-
vant to the problem at hand - and a non-dimensional number N
(O < N < ¥2) which is a measure of the coupling of and the
local rotation 1/2 curl y . The number N, called ‘the coup-—
ling number (Paul and Sridharan, 1980 b), has no analogue in
couple stress theory, As N —>0 classical theory is recove-
red; in the 1imit N->Y2 (the case of extreme coupling) couple
stress theory can be deduced, This deduction brings to light
certain inherent limitations of the couple stress theory.

THE LIMIT £/a-> O RECONSIDERED

The main result of Paul and Sridharan (1981) is that K(l) and

K 2 depend on the coupling number N in addition to —f/a
and Poisson's ratio., The 1imit £ /a >0 now has two cases:
(a) the simultaneous limit £/a >0, N—=>O and (b) the
limit £/a >0 with N arbitrary but fixed. We interpret
limit (a) as a 'smooth' transition from couple stress material
to classical material by a sequence of micropolar materials
with decreasing micropolarity = micropolarity being determined
by the parameters £ /a and N. In 1imit (a) the solution
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obtained by Paul and Sridharan (1981) - in particular the
factor K 1) _ Jttains the classical value. However the solu-

tion and the formula for K 1) are valid only for the case of
‘weak micropolarity' ( £/a <« 1, N«& 1), a condition more
stringent than weak coupling (Sridharan, 1980)., Limit (b)
corresponds to £ /a —> O of couple stress theory and has
important physical significance as discussed earlier. Unfor-
tunately limit (b) could not be applied to the solution - and

to the factor K(l) - obtained by Paul and Sridharan (1981).
We now present a specific crack problem in which the crack-tip
stress field is controlled by the force-stress intensity factor

K(l) alone; in limit (b) this factor takes on an elegant
closed form expression which may be called 'effective stress
intensity factor'.

GRIFFITH CRACK INTERRUPTING HEAT-FLOW

Consider a Griffith crack, =-a £ x; L a, xgz=1% O (Cartesian
coordinates x4 and plane strain in the Xy X3 = plane) with
thermally insulated faces, disturbing uniform heat-flux qg

in the negative x5 - direction. In classical elasticity this

problem was first considered by Florence and Goodier (1960) as
a limiting case of the problem of heat-flow around an elliptic
hole. See also (Sekine, 1977).

It is enough to consider the 'perturbed problem' : the half-
plane (x3 > 0) problem with the boundary conditions

t31(x1,0) = m32(x1’0) =0, lxll 20 (1)
ty,(x,,0) = O, %] < -

u (%,,0) = O, Ix, 1 > a

Ty3 = =g %] < a
T= 0, %1 > a (3)

(T = temperature) and the usual regularity conditions at « ;
for a unique solution and for bounded strain energy at the
crack tips, an 'edge condition' should be imposed. We take
this condition = in conformity with the classical solution - as

ul(xl,o) = O(Va-xl), X} —>a= (4)

The field equations are

(A + u) grad div u + (p+K)v2_g+ Rcurlg - Bo grad T = O

(a + B) grad div9+7V22+ K curl u - 2Kk@ =0 ()
V2T = 0
Here A, U4 are Lamé constants; , @, B, Y are additional

R
elastic moduliij B, = (3A+ 2p +K )ay where ay is the
coefficient of linear thermal expansion, Let

W=+ R, N = K/ ek), L=/ 20 +R), V=LY AruriR)

These quantities have the obvious physical meaninge. We adopt
the following notation for Fourier sine transform

=)
\/% J f(v) sin(vr) dv = Fg [f(v); ]
o
and a similar one for cosine transform. Further let
r=x/a, y= \/v2 + M2, M =N/(L/a)

If we set

u, (r,0) = a Fg [u(v); ]
the boundary conditions (1) and (2) yield — utilising the
field eqns (5) and the stress—strain relations not quoted
here = the dual integral equations

(a'+ & N?) F_[v(1+G(v)) U(v); r] = (a'-1) F [U;(v); r], osr<d

Fuwv); rl =0, r>1 (6)
in which
2
N 2
s - — { e 'l}
a'+ % N2 yiyty

at = [21=" )T T

The function Uy (v) appearing in the right hand member of (6)1
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is to be determined from the thermal boundary conditions (3). As N—0, ~/(1)—>1; and K;; attains its classical value say
We have

FIw,(v); r] = Y(x/2) B, a q, (2s1)7Y, 0<r <1

(7)
Fc[Ul(v); r] =0, r>1

The solution is
Uy (v) = V(x/2) (Bjaq,) (201)71 g (v) vt (8)

where J,(.) is the Bessel function of order 1. Now, the only
unknown 1s U(v). Put

B agq 1
2 a' -1 o o R
U =/ 2 J ¥t V(t) J,(tv) dt (9)
(v) /,‘ ik o b+ 4T Y R

This representation satisfies condition (4). The dual
integral equations (6) yield a Fredholm integral equation:

Y(t) + .fl K(u,t) Y(u) du = t3/2. oO<tg1 (10)
0

whose kernel K(u,t), not quoted here, is symmetric and
continuous. This formally completes the solution of the
problem, The only non-vanishing stress on the plane of the
crack is t31' In the limit r —> 1+ , we have

(2u') t5,(r,0) = (a'+(1/2)N?) Y(2/%) Q(z) + O(1)

where

d L]
Q(r) = =3¢ J [1+ cos(xzv)] U(v) dv
(o}
Defining the Mode-=II stress intensity factor as

Ker = 2a 1im Y(x=1) t,,(r,0)
II ryl+ 31

we find o
Kyp = 1/2(1-a") Bgaga¥? v (1) (11)

Kgl. For arbitrary, but fixed N consider the limit £/a —>O.
In this 1imit

2 oo
K(u,t) = —{1/2)N" Y(ut) é x Jy (xu) J;(xt) dx (12)

a'+

provided the integral on the RHS is understood to define a
generalised function, Let H(,) denote the unit functional.
We know

u J Jy (xu) Jo(xt) dx = H(u~t)
(0]
Differentiating with respect to t
u J x Jy (xu) J;(xt) dx = S (u=-t)
(o)

where S(.) is the delta functional. Substituting in eqn(12)

Klupt) == Q2N (0
a'+ % N2

Eqn(10) is now readily solvable; the solution is
Y (1) = [1+(1= 1) N2]e¥/2

Substituting in eqn(ll) we obtain the 'effective stress
intensity factor!

Krp = K9 [1+(2= »*)N?)

where K?I is the classical value of KII and ' is Poisson's
ratio., The range of N is (0,Y2),

For a Poisson's ratio of 0,33, and for N = ,1, .2, .4, .6,
«8, 1.0 the percentage increments in KII' over the classical

value are, respectively, 0,7, 2,7, 10,7, 24,1, 42,9 and 67.0.

For the case of extreme coupling (N = Y2) the said increment
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is 150 per cent (Poisson's ratio = 0.25). The increment in
KII obtained on the basis of couple stress theory should

coincide with this figure. But we are not in a position to
check this as the solution to the persent problem on the

basis of couple stress theory has not been obtained, as far as
we know., However it is of interest to note that the increment
in KI for a penny=-shaped crack worked out on the basis of

couple stress theory, is 150 per cent (Ejike, 1969).
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