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ABSTRACT

Flastic interactions of a crack with an array of microcracks located near the
tip and imitating "damage" is analyzed. The stress field and the effective
stress intensity factor are considered based on the double layer potential
technique (known also as representation of cracks by dislocations) and poly-
nomial conservation theorem. Two examples are given: (1) one microcrack on
continuation of the crack line (stress "amplification') and (2) two micro-
cracks parallel to the main crack and located at certain distance from the
crack line; in this case, both stress "amplification" and stress "shielding"
are possible depending on the microcrack's location.
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INTRODUCTION

Displacement field generated by a single crack can be represented in the form
of the double layer potential integral, with crack opening displacement (COD)
being the potential density ("representation of crack by dislocations")

u(x) = [ b(x").o(x", x)dx’ 1

Q
Where § is a crack surface (line, in a two-dimensional case) and ¢; is the

second Green’s tensor. This integral exists only in the principal value
sense. The stress field generated by a crack is:

o(x) = T fnyx').g(g, x)dx’ (2)
where T denotes the stress operator transforming u(x) into a stress
field; Thdex "x" indicates that differentiation in T is to be performed with
respect to x. Note that representations (1) and (2) are valid for both two-
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and three-dimensional problems.

In the present paper, we consider a two-dimensional (plane stress) configura-
tion consisting of a main crack (macrocrack) and N much smaller cracks
(microcracks) located near the macrocrack tip. For simplicity of calcula-
tions, mode T remote loading of the main crack is assumed. The system of
singular integral equations expressing traction-free boundary conditions on
the crack faces describe the problem (Isida,1970;Barr and Clearly,1983). The
essence of the proposed method is that the functions b, are sought in the
form (ellipse) x (polynomial) where the first multiplier corresponds to COD
of a crack embedded into a uniform stress field and the second multiplier
accounts for the nonuniformity of the stress field. Such representation is
based on the following: (1) approxination of the stress field along the line
of a given crack by polynomials and (2) theorem on polynomial conservation
stating that the COD of a crack embedded into a polynomial stress field of
degree N has the form (ellipse) x (polynomial of degree N). Using these we
reduce the system of integral equations to a system of linear algebraic equa-
tions for the polynomials’ coefficients. In many cases the use of linear
polynomials (i.e., representation of COD by "linearly distorted" ellipses) is
sufficient. When the obtained system is large and inconvenient for the direct
solution, an iterative approach is proposed (Chudnovsky and Kachanov, 1983).
The iterations have clear physical interpretations: the zeroth iteration ap-—
proximates the stress field by the macrocrack tip dominated field, the first
iteration gives contributions from non-interacting microcracks embedded into
the macrocrack tip field, the next iterations account for the first, double
and higher order interactions.

FORMULATION OF THE PROBLEM
Stress field near the macrocrack tip is a superposition

N
o(x) = o=+ G(x) +i=‘figi(3) (3

where oo is the stress field due to remotely applied loads in the absence of
cracks. & and o, are the stress fields generated by the main crack and by
the i-th microcrack, respectively. Ngar the macrocrack tip e?gresses
can be neglected compared to §: The field G can be represented as K 0 (x)
where 9y = E(Q)/ /27r denotes the '"standard" mode I crack tip field. Thﬁg,—

£
eff s )

a(x) = K; o, (x

_ eff
gi(i) = KI g (x) +

1 TR i

N~z
e~z

T [ b.(£.)-d(f, ,x)dF 4)
4 1 - o =2 1 — 1 — ;
i
where £, is a coordinate along the i-th crack. Expression (4) contains 2N+1
scalar unknowns: components of N vector functions b () and Ky . Traction

free boundary conditions on the microcracks result in N vectorial equations:

N
A { EFE <
AT X + 3 .
=i T Lo'E ki] T {?'k( k‘ Q(Fk,g)dﬁk

K#i =
(5)

s o . _ a . =
T, é 91(51) 2“i'1)d£ i} = 0; %R i I=Niy cue oyl
i
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The last integral in braces converges in the principal value sense; it be-
comes divergent, if the stress operator is moved under the integral and
applied directly to gjéj x). It can be shown, however,that its limit value
is given by the following regularization (Kanaun, 1974):

f: £ . v ' = " -
Lim T 7D (5708080, x)de?y = L b (€' D -b (F)]-T [&(£', ,x.)]cE" &)

- I i ~ i i =%

i 1 i

where the integral on the right converges in the principal value sense.

Expression (4) contains one more unknown, Kd{ An additional equation
represents boundary condition on the main crack (- QO,QO) with unit normal n
and reflects the impact of the microcrack array on the main crack:

7>

2
Kfff = k@ & 1 © 0+E
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Two particular crack configurations are considered below.
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ONE MICROCRACK ALLIGNED WITH A MACROCRACK, PIECEWISE CONSTANT
APPROXIMATION (Fig. 1)
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It is assumed here that the stress O induced by the main crack tip field
along the microcrack line does not ange much within this 1line and can,
therefore, be approximated by a constant, taken to be o__(c) (see Fig. 1.
(This approximation becomes inadequate if the microcratk is located very
close to the main crack tip; this case is considered in the last section).
The COD of the microcrack is elliptic and is related to a uniform traction
5 __(c) by the formula:
vy as

b _(F) = = S)o (c)

g v %y (8)
where & 1is a coordifate along the crack counted from its center (Fig. 1)
e( &) = vVi-[(g-c)/ 2] and E is Young’s modulus. Boundary condition (5)
ségply means that traction generating the COD (8) is the one induced by the
K - dominated field along (c-2, c+yg), e., in the framework of piecewise

constant approximation, ny =fLy(c) = KI /v2T(Z + 6). Equation (7) yields
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where © is the stress generated by the microcrack embedded into the de -

dominatdd field and to be found from (2) with (8) as the potential density.
Calculating the integrals involved in (7) and (2) we obtain:

eff ..o eff $ eff _ o _
KI = KI + KI q( JL) so that KI = KI/(I q) (9)
1
1 1+t 1 =
where q = q(?) = ! "TTQ [——-——————- 1] dt
) Y2(et+6") -1 1=(—)
t-c (10)
and 8 = YQo,, & = &§/2_. The graphs of KeE/K; are shown in Fig. 2 (lower
curve). K; + > when the distance between Ttwo cracks tends to zero.

The stress field is given by the formula:

eff ¢ (8(x)] m c+L
o(x) = K { + (11)
248 1 T J e(E)n-0(g, )d}
Y2mr (x) V21 (1+8) *E X oy 2rotE.x)dl

The first term in braces represents the main crack tip field, the second term
represents the stress field generated by the microcrack.

One comment should be made with respect to the solution obtained. In the
problem considered only one microcrack was 1nvolv%% and the system of equa-
tions (5), (7) was reduced to one equation for K~ which permits the exact
(in the framework of piecewise constant approximation) solution. 1In problems
involving many microcracks, however, the system of linear algebraic equations
for the polynomials’ coefficients is large and may be inconvenient for analy-
tical solution. A method of approximate solution has been proposed (Chudnov-
sky and Kachanov, 1983). It is based on iterations corresponding to multiple
crack interactions; their physical meang?% can_be dggppstrated in two crack
interag%%on problem. ,Solving equation K = K_ + qK by iterations we ob-
tain KI = k; (l+g+q +...); the sum of Ehis series converges to (9) for q<1l.
In the sequence of iteration terms, the first term gives the macrocrack tip
field in the absence of microcracks, the second term accounts for the first
order interaction, i.e., the stress field generated by the microcrack
embedded into the KI—dominated field gives correction k° q. The third term
accounts for the second correction, etc. (Fig. 3). Such a solution with
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only a finite number of terms retained gives an approximation in two diffe-
rent senses: piecewise constant approximation of the stresses along the
microcrack line and an approximation by the multiplicity of crack interac-
tions taken into account. Note that such iterative procedure is particularly
convenient if geometry of the microcrack array is known only in probabilistic
terms (Chudnovsky and Kachanov, 1983).

TWO MICROCRACKS PARALLEL TO THE MAIN CRACKS (Fig. 4)

In this configuration two different results of crack interaction may occur
depending on the relative values of the geometrical parameters; one when § >> 24

J,

FIGURE 4

eff the other

. In the

o
and the microcracks "amplify" the stress concentration (K df> K 3,
when §%¢, and the microcacks "shield" the macrocrack tip {KI <K 1)
intermediate range these two mechanisms compete.

Because of the symmetry of the problem there are no mode II terms and equa-
tions (5) take the form

h
by [0(c, )]
ny o _eff byy 2

vy 2 1
v 2nr(c,%)

h
[0(c,- ]
h h _ o eff Pyy 2
(<] fc,z) 4 fl o y(C. = -Ky

=)

Yy 2y 2
h
VYa2rr(c,- 5)

The first equation expresses a boundary condition on the microcrack £,. The
first term of it represents the normal stress at the center of the microcrack

21, the second term represents the stress component Oyy exerted on 21 by 12

with f being an influence function and the right hand cerm is the dominat-
ing stress field at the center of % . The equation is formulated at the
center of ¢, because of the piecewise constant approximation. The second
equation is %ormulated for the microcrack ¢, and, because of symmetry, it is
identical to the first one. The influence function f12 = f21 = f is expressed
in terms of the double layer potential:

h
Uyy(c"z) + f:‘ GG, =

(12)

S

2

£ = £(L,x) = (n ) :T S e(E)n-8(E,x)AE (13)
- ]

|

where ¢ = £ = 2 and n 1s a unit normal to the microcracks. An additional
equation for K%f is:
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K = K — [ o (t) (14)
T T 2R Yy
(o]
where Oyy is related to o(c,g) by the following formula:
o (x) = ax, n(c,n) nn : T [ e(E)n-®(§,x)drx (15)
vy = E 2 == —x == =

[4

Thus, (14) and one of the equatioms (12) constitug%fa system of two 1ing%§
algebraic equations for two unknowns ny(c,z and kI . The solution for 1(I
has the same form (9), with,

h
6 [0(c, ) 2 [T+t
2
q=- L 2 P\t at (16)
/L [+f(e,m ]/ h. -7 &
(<] 2'"1.'((:,5) o

In order to analyze the behavior of de as a function of geometrical para-
meters, the influence function must be evaluated. The estimates of £( 2,x)
for large and small 2/h can be easily obtained. Using these estimates q can
be represented in the form

2

5 ) for small 2/h

3
- e — -
n 2
1+6(2/h)

2+2" 2
- V 5 n for large 2/h
eff
<

Formulas (17) give negative values of q which according to (9) gives I(%f
/RS
1

L
h/2
7

k° which demonstrates the presence of "shielding" effect. The graph of IG[
h
vs. 21/-5 is shown in Fig. 5.
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FIGURE 5
LINEAR AND HIGHER ORDER APPROXIMATIONS

One microcrack aligned with a macrocrack was considered above on the basis of
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piecewise constant approximation of stresses on the microcrack. In this
section we show how the variability of stresses along the microcrack can be
taken into account.

In a linear polynomial approximation, the tractions along the microcrack line
are assumed to be of the form:

neo(x') = neg(c') + n-o'(c")(x'-c"), x'elc'-2", c'+2")

(18)

where x’ = x/% , ¢’ = c /2 and 0‘(c’) is a derivative with respect to x’
taken at the mlcrocrack center. According to the polynomial conservation
theorem (Willis, 1968) the microcrack COD can be represented in the form of a
"linearly distorted" ellipse:

b(g) = [b_ + b (£'-c")] 4e(£)n (19>

where b and b, are some unknown coefficients. The displacement field gene-—
rated by the microcrack is

e+l

u(x) = Cfr b, + b, (-c)]4e(E)n-d(E,x)d (20)

Application of the stress operator T_, substitution of the Green’s function
and evaluation of the integral result in the following expression for the
traction o__ along the microcrack line (c-%, c+2): o’ (x°) = (E/Q) [b_ +
2b.(x’-c’)Y’and, comparing coefficients of the linear ¥Knctions, we obtain
J %c') = (E/YHb , o0’ (ec’) = 2(E/2)b. Following the same line of reasoning
¥3r the polynomial tradfions on the microcrack

(x) (x'-enH
n-g(x") = z n-o (c") i (21)

(where ca(zc’)‘isthe k-th derivative in the direction of the microcrack taken at
{ts center) the set of coefficients bk can be found. The vector column bk

appears in the expression of a crack opening displacement which is the gene-—
ralization of (19):

L (x'—c')K
b(E) = ] n beeld) ——r—— (22)
K

Two vector columns n.g(k)(c) = {0} and b, = {b} are linearly related through
the matrix {A} : {b} ={A}{oc}. It can bé shown that the matrix {A} can be
represented in the form
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1 o Buzﬂ-‘2 0 BueV»"‘ 0 [’,“V:"
0 % 0 Boul? 0 B1s 0
2 1 ” "
A} = = o o0 % 0 B.u22 0 Bk
{A} 5 3

(23)

Where the coefficients B in every row form the decreasing sequences. The
components of the vector ¢6lumn {g! must be determined from the boundary con-
dition on the microcrack:

eff

o] = a
oy(©) = KT G (L4 ), (24)
and the relatiaons which follow from the latter:

' eff ' " off "

o (c) =K o 2+ 8, =

Yy ¢ I ovyy oyy(c‘) KI 0oyy(l + 8, (25)

o'P) ey = k5P g 4 5y

Yy I “oyy

Substituting (24) and (25) into the 1linear form, with the use of (4) we
obtain the resulting stress field in the form:

$10(x)] PN c+e . \n
s =x8TF ———+ Ly ) oA 0w T s 29 o (eyn-ete,nar
o Rat 1 r_—_—21!r(1) K=0 n=0 nk ovyy -9 !

(26)

where I(df has the form (9) again. Using this one can evaluate an approxi-
mate&ofution. For instance the upper curve of Fig. 2 represents the graph
of KI as given by the linear approximation; it shows that, unless § /% be-
comes very small, the results given by the linear and by the piecewise con-
stant approximations are close.

It can be shown that the series converge when P> . Note in conclusion, that
the procedure described above can be applied to the macrocrack surrounded by
the array of microcracks of aribtrary configuration.
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