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ABSTRACT

A finite element investigation of the effect of thickness on plastic defor-
mation and yielding characteristics in three-dimensional cracked bodies is
presented. It is shown that the fundamental deformation modes and extent of
plastic deformation are significantly influenced by the specimen thickness.
The results show the transition from a local plane strain to plane stress
response near the crack front as the specimen thickness is decreased. While
the results are generated for a specific aluminum alloy (7075-T7651), the
predictions for other hardening materials would be qualitatively the same.
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INTRODUCTION

0f fundamental importance to the accurate fracture assessment of components
and structures made of metals is the study of ductile fracture processes and
the plastic response near a crack. The basic deformation response near the
crack front must be resolved accurately for reliable predictions. Fracture
criteria have been proposed based on many controlling quantities (e.g.,
stress, strain, energy, displacements, etc.) both on global and local scale
levels. Without exception, all of these criteria require accurate local
deformation modeling.

To understand the scale shifting effects from the laboratory specimen to the
structural component, it is imperative to discover the effects of specimen
thickness on the deformation response. This problem is an essentially
three-dimensional one and must be investigated accordingly.

The purpose of this investigation is to delineate the effect of specimen
thickness on local crack front yielding characteristics in a cracked speci-
men. The three-dimensional elastic plastic finite element code developed in
[1] is employed for the analysis. Specimen thicknesses investigated range
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from well beyond ASTM plane-strain requirements to thin sheet dimensions.
The yield zones calculated in this work demonstrate the transition from di-
latational to distortional dominance ahead of the crack tip as a function of
thickness (equivalent to a transition from plane strain to plane stress).
The magnitude as well as the extent of yielding is shown to be highly thick-
ness dependent. The results of this study also demonstrate that two-dimen-
sional analysis based on plane strain (for thick specimens) or plane stress
(for thin specimens) can fail to accurately model the local response when
simple standards would dictate otherwise.

PLASTICITY FORMULATION

The incremental theory of plasticity employed in this work is based on the
classical rate proportionality assumptions and J, flow theory. While the
mathematical details vary with the choice of yiezd criteria, the salient
features of all incremental theories are the same. This discussion will,
therefore, be confined to the specific theory employed in this work.

Assuming stress strain rate proportionality and J, flow theory (which
assumes the plastic deformations are incompressibfe) the stress-strain rate
relations can be written as [2]
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where:
. . 1
eij Eij =3 Epp Gij are the deviatoric strain rate components,
Vv is Poisson's ratio,

E is Young's modulus,
1
Sij Gij -3 opp Gij are the deviatoric stress components,
a are the coordinates in stress space of the yield surface center

ij
Si = si - 8, are the deviatoric stress components measured relative
3 3 3 to the current yield center,
=/3
Ge > sijsij is the effective stress,

o' = V/E-S' S!'. 1is the effective stress relative to the current yield
e 2 °13°1j
center,
oy is the current yield stress, and

¢ denotes time differentiation.

Due to the plastic incompressibility condition, the hydrostatic strain rate
is proportional to the mean stress rate and is given by
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The function £f(0_ ) is dependent on the uniaxial stress-strain curve and will
be discussed subsequently. For a von Mises (J,) material, the center of the
yield surface moves at a rate proportional to ghe projection of the stress
rate vector onto the local normal to the current yield surface and can be
written as

(2)
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where B varying from O to 1 will model hardening behavior from kinematic
(B = 0) to isotropic (B = 1).

The function f(o_ ) is derived from the uniaxial stress—strain curve. For a
uniaxial specimefl, equation (1) reduces to
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Thus, in the plastic range
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If the uniaxial stress-strain curve is expressed in a multilinear fashion,
the stress-strain relation is

o.M e %m
£ =t E_(Gl-cy) + E—(oz—cy) + an W =(0=g ) (7)
where cm—l < o< cm and am is given by
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From equation (7), the plastic strain rate is given by

: _ CICH €9y
plastic E
and thus from (6)
£(0) = m_ 10y
e EOe

Equations (1), (2), (3) and (10) provide a complete set of elastic-plastic
constitutive relations. Together with the equilibrium equations and the
strain-displacement relations, a governing system will be formed. It is
important to note that the constitutive formulation outlined above is
acceptable for finite as well as infinitesimal strains. Also of importance
is the fact that this formulation is strain-rate independent. This assump-
tion appears to be realistic for most engineering metals at room temperature

.(or cooler). For high temperature problems a rate-independent formulation

is dubious.

Equations (1), (2), (3) and (10) provide the fundamental relationships be-
tween stress and strain rates. The equilibrium conditions (governing equa-
tions) for a continuum body in the absence of body forces and inertia
effects can be written as
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3cij/3xj =0 (11)

with the boundary conditions
cijnj = Ti on ST

and (12)

where i are the specified loading rates on the boundary experiencing applied
;7

tractions (S.) and u, are the velocities specified on the remainder of the

boundary (S ?. Utilizing the standard infinitesimal strain-displacement

relations °

€, = %—(Bui/axj + du, /3x,) (13)

i3
and either employing the Principle of Virtual Work for increments of dis-
placement or by performing the standard Galerkin technique on the governing
equations, (11) and (12), the finite element equations governing the nodal
velocities, U can be written in terms of the loading rate vector, R, in

the form - ~

K@) * T -R=0 s
The standard finite element assumptions made are given by
u = § U
g=E*l as)
g =@ - €
T
K(U) = z I B'D(U) B dA

elements element volume

where N are the shape functions. The set of rate equations (14) will be in-
tegrated one load increment (AR) at a given time to determine the corre-
sponding new displacement increment, AU. The Newton-Raphson or tangent
stiffness solution procedure is employéd as described in [3].

PROBLEM DESCRIPTION

To study the effects of specimen thickness on the yielding characteristics
of typical fracture specimens, a finite center-cracked plate was chosen for
investigation. The standard mode I configuration shown in Fig. 1 was
analyzed for total thicknesses of

2T = 2.54 cm 2T = 1.27 cm
2T = 6.35 mm 2T = 3,175 .mm

The material investigated was a 7075-T7651 aluminum alloy with elastic pro-
perties

E = 7.24 E+04 MPa
v = 0.3
cy = 4.07 E+02 MPa

The uniaxial stress-strain curve is shown in Fig. 2.
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Fig. 1. Through crack geometry and loading.
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Fig. 2. Uniaxial stress-strain curve for 7075-T6751 aluminum,

The finite element discretization employed in the analysis utilizes 20-Node
quadratic isoparametric elements exclusively. A fine mesh near the crack
front is employed for accurate modeling. The grid characteristics and con-—
vergence properties are discussed in [1,4]. The maximum load applied was

Omax = 1.77 E+02 MPa

A hardening parameter of B = 0.5 was also assumed in the analysis.

RESULTS AND DISCUSSION

The yield zones predicted at the maximum load for each of the four thick-
nesses studied were calculated and plotted both on the surface and midplane

of the specimen. The results demonstrate the significant influence thick-
ness has both on the nature and extent of the yielding.
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Figure 3a is a plot of the von Mises stress contour corresponding to the
specimen yield stress calculated at the maximum load on the surface of the
2.54 cm thick specimen. As expected for a thick specimen, this zone has the
characteristic form of a plane strain yield zone (i.e., minimal yielding
ahead of the crack tip and a very upright yield zone). The maximum extent
of yielding is 30.7% of the half crack length which is consistent with the
small strain assumptions made in the analysis requiring contained yielding.
Figure 3b is a plot of the surface zones for a specimen with total thickness
of 1.27 cm. The yield zone is slightly wider (more rounded) with this
thickness. The maximum radius is now 32.7% of the half crack length and the
yielding ahead of the tip has increased (though it is still small). The

zone still maintains the basic plane strain characteristics at this thick-
ness.

Figure 3c shows the surface yield
zone for a specimen with thickness of
6.35 mm. The zone is now much wider
with a larger maximum radius and
yield extent ahead of the tip. The
zone no longer exhibits the plane
strain characteristics but is in
transition between plane strain and
plane stress. Figure 3d is a plot of
the surface yield zone for a specimen
with total thickness of 3.175 mm.

The zone is significantly more
rounded than any of the previous r/a = .045

zones with a larger maximum radius

and yield extent% The maximum yield Fig. 3a. Surface yiel: ;oneszfoz
radii and extent of yielding ahead specinen Wit 3 = SN ey
of the crack tip for the four thick-
ness surface zones are given in
Table la. These yield parameters
both increase with decreasing thick-
ness as was expected. The final
zone at a thickness of 3.175 mm has
the rounded characteristic of a
plane stress yield zonme. The direc-
tion of maximum yielding, however,
is still a fairly large angle rela-
tive to the crack line suggesting
some influence of dilatation.

Though for this problem (with a
relatively small amount of plastic
deformation present) the difference
between the maximum radii is not
large, the nature and extent of

yielding ahead of the crack tip show a large dependence on the specimen
thickness.

r/a = .07S

Fig. 3b. Surface yield zones for
specimen with 2T = 1.27 cm.

Figure 4a is a plot of the von Mises stress contour corresponding to the
material yield stress on the midplane of the 2.54 cmm thick specimen. The
zone 1is typical of plane strain zones and is smaller than the surface zone
for the same thickness specimen. The shape of the zone with a minimal ex-
tent of ylelding ahead of the crack tip suggests high dilatation in that
region. The midplane zone for the 1.27 cm thick specimen is shown in
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Fig. 4b. The zone 1is larger than that
of the thicker specimen, however,
there is still minimal yielding ahead
of the tip. The angle of maximum
yielding is more acute than in the
thicker specimen. The stress state,
however, would still be characterized
by plane strain.

Figure 4c shows the midplane yield
zone for the 6.35 mm thick specimen.
The zone is considerably wider and /e = .208

more rounded than for the thicker

specimens. It shows characteristics Figs 38 supkace yiilg ;;n:safog

of both plane strain and plane speelmen Wit s s
stress zones suggesting a region of
transition. Figure 4d is a plot of
the midplane yield zone for the
3.175 mm thick specimen. The zone
is basically a plane stress zone
and is larger than for the thicker
specimens. The maximum yield radii
and radius of yielding ahead of

the crack tip on the specimen mid-
planes are given in Table 1b. Both
increase with decreasing thickness £
as was expected. In all cases, the ! r/a = .296 1
midplane yield zones are smaller

than the surface zones.

Fig. 3d. Surface yield zones for
specimen with 2T = 3,175 mm.

r/a = .039 r/a = 0.071

Fig. 4a. Midplane yield zones for Fig. 4b. Midplane yield zones for

specimen with 2T = 2.54 cm. specimen with 2T = 1,27 cm.

r/a = .193 r/a = ,288

Fig. 4c. Midplane yield zones for Fig. 4d4. Midplane yield zones for

specimen with 2T = 6.35 mm. specimen with 2T = 3,175 mm.
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TABLE la Yield Radii as a function TABLE 1b Yield Radii as a Function of

of Thickness for Surface Thickness for Midplane Yield
Yield Zones. Zones.
Thickness Tmax/a To/a Thickness Tmax/a Tola
T = 2.5 cm 0.307 0.045 T - 2.5 0.260 0.039
T=1.27 cm 0.327 0.075 T = 1.27 2: 0.280 0.071
T=6.35m 0.331 0.208 T = 6.35 mm 0.283 0.193
T=3.175m 0.343 0,296 T=3.175 m 0.299 0.288
rmax -+ maximum yield radius T, -+ yield radius along crack line
CONCLUSIONS

The results of this study demonstrate the thickness dependence of the yield
zones near a crack front on specimen thickness. It 1is shown that both the
extent of plastic deformation and the dominance of deformation type (i.e.,
dilatation or distortion) are controlled by the thickness. The nature of
the deformation is fundamental to the understanding of the incipient frac-
ture processes. The delineation of the fundamental deformation response
near a three-dimensional crack front is an imperative first step in the
understanding and accurate prediction of ductile fracture processes.

To further the understanding of ductile fracture, it is necessary to compare
theoretical and experimental deformation predictions local to the crack
front. Only through such comparisons can an assessment be made of the
accuracy and reliability of the nunerical methods for plastic analysis. To-
ward this goal, it is proposed to neasure the residual deformation on the
surface of the specimen in the unloaded state. The theoretical study pre-
sented above demonstrates that the finite element predictions are qualita-
tively realistic and sensitive to specimen thickness. Comparison with ex-—
perimental results will delineate the grid characteristics and hardening
models which best model specific geometric and material applications. After
successful "tuning" of the finite element model, a complete description of
the stress and energy state in a cracked body can be predicted with confi-
dence. Once fully three—dimensional stress fields are predicted, ductile
failure theories can be tested and skeptically compared without the bias of
unrealistic analytical approximations.
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