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ABSTRACT

A dislocation queuing model of fracture stress in an anisotropic brittle
material is proposed. Using continuous distribution of dislocations and a
crack initiation criterion at the tip of the dislocation pile up a modified
Hall-Petch type relationship is obtained. Consequences of this relation for
metals and their alloys are discussed.
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INTRODUCTION

Due to the natural inhomogeneities and 1local character of fracture
initiation, a theory of strength of brittle fracture can be based on the
concept of weakest link and/or on the critical concentration of defects. As
is well known in case of many solids local plastic mechanisms play a role in
crack initiation. The source of fracture can thus be associated with
interaction of dislocation produced when load 1is applied rather than with
other defects already present in the material.

Theory of dislocation queuing has been applied by many workers (Petch, 1953;
Stroh, 1957; Cottrell, 1958) for explaining brittle fracture of
polycrystals. Several years ago, Armstrong and Head (1965) proposed a
dislocation queuing model for brittle fracture whereby the dislocation
driven by an applied stress pile up on a grain boundary. Crack initiation
and brittle fracture results when the leading dislocation is brought within
a Burgers vector of the locked dislocation in the pile up. Their study
revealed that the fracture stress of material depends not only on the grain
size (in the familiar Hall-Petch fashion) but 1is also dependent on how
strongly the dislocations are repelled or attracted by the image forces at
the grain boundary. These image forces are however dependent on the elastic
anisotropy of the material. Therefore, the familiar Hall-Petch relation
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must be modified to take 1into account the elastic anisotropy. Their
treatment was essentially numerical. We present an analytical treatment and
show that the anisotropy effect 1is relatively weak, but must be considered
for superfine grain sizes. For such materials we propose a modified
Hall-Petch type relationship.

Proposed Model

Let us consider the brittle solid as an aggregate of randomly oriented
grains. In some of these grains a dislocation pile up has formed under a
constant stress as shown in Fig. 1.
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Fig. 1. Dislocation model used in the calculation. "1" and "2" refer to the
two grains considered. Image dislocations are shown in grain "2".

Consider the plane x=0 as the grain boundary across which the orientation of
the crystal changes. There will be an elastic interaction with the
dislocations in “1" due to (a) the presence of the grain boundary and (b)
elastic anisotropy. In such a situation the equations of equilibrium for n
dislocations piled up at x=0 due to an applied stress o are:

(1)

j =1,2,0..n

Physically the strength of the image dislocations are K times the strength
of the real dislocations K is a factor taking into account the anisotropy
(K=1 if no anisotropy) where

.
Gl+ G2

and A = gg (screw dislocations)
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or A= Gb
Zn (I-v) (edge dislocations)

where b is the magnitude of the Burger's vector, G is the equivalent shear
modulus C44H, H is proportional to the energy factor, and v is the Poissons'
ratio. Equation (1) 1is exactly true only for screw dislocations (see
Armstrong and Head, 1965). For our purpose (see below) we need to know the
analytical expression for Xx;, the distance of the leading dislocation from
the grain boundary as a function of the applied stress. This is done by
solving (l1). An explicit solution of (1) can only be obtained in the
continuum distribution approximation such that f(x)6§x dislocations are
contained within any interval 6xj leading to the integral equation:

L L
f(x)dx f(x)dx _ o
/ . = T K[ - = N o<x<L (2)
o o ‘o
Barnett (1967) has given a solution for f(x) as
1/2
a 2 1 =1 -1 L
£(x) ey (—l'_—'K) sinh [(1—; cos K)cosh = (3)

As in case of a regular pile up f(x) is infinite at x=0, but equal to zero
at x=L. Most of the properties of the pile up under consideration can now
be obtained from a knowledge of f(x). The length of the pile up can be
obtained from the relation

L -1
n -j f(x)dx -%208____1(

o (1—1(2)1/2

o A (1-»1(2)1/2
¢ cos-lK

or L =

(4)

To compare this result with the numerical result obtained by Armstrong and

Head (1965) we expand cos™lK in a series in K and obtain

in_A.[l_'.Z
o ™

L = K + 0(K2)+ o ] (5)

which should be compared with the numerical result (Armstrong and Head,
1965)

L = Egﬁ [140.9K] for large n (6)

and the extrapolated expression of Chou (1965)

2nA b
L === [ 14z ~1)K] N
We now proceed to calculate x;, the position of the first mobile

dislocation as a function of n and K. For this purpose it is convenient to
write equation (3) in the equivalent form

( 2

£F(x) = =2 —)1/2(5‘3l ((+? - (1-»% (8)
2rA "1-K X +y y
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1 1
where a = _cos K

x.2 1/2
y = [ =0 (9
Near xj, x<{L for sufficiently large n, therefore, y = 1

i 1/2(3E a

equation (8) becomes f(x) = A (T%E) - ) (10)

The first dislocation position, x;, is given by

x
[ f(x)dx=c where c = 1

[
1/2 x
a 2 a 1
or CEwY (T:f) QL™ 3= =c¢ (11)
provided a<l
1
c(l-a) -al| l-a
X, = 172 (2L) (12)
_E_.(_£~)
2rA " 1K
1 -1 Gy~ G
(As stated before, c =1, a<l, a= —cos K, K = ———
m G+ G,

Writing L in terms of n

a
x1 = n-(i:;)

—(1-1+27k+0(k2))
~ n (13)

which should be compared with the numerical value (Armstrong and Head, 1965)
for x)

x] = n~(1-1.1K)  for large n. (14)

Finally we obtain the Hall-Petch relationship in the usual way by obtaining
the applied stress for which x; = b and obtain the Hall-Petch type relation
as

0 =0y + Kod™2 (15)

where

2 =1/2

- a-1
KO 2rA c(l-a)b (m)

and pile up length L identified with grain radius d/2.
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Equation (15) is very similar to Hall-Petch relation. The exponent of d is,
however, now seen to be —a (a=1/m cos” 1K) instead of —1/2. Depending on the
value of K, a will vary from O to -1l. Its exact value will depend on the
anisotropy of the material. Preliminary calculations indicate that in most
materials the value of a is within 15% of -1/2. In view of the simplified
nature of the model and approximations used in the calculations, the
quantitative predictions of the model are not expected to be in accurate
accord with experiments and no such claim is implied. What we do claim is
that our calculation implies a departure of the exponent of grain size in
Hall Petch relation from -1/2 to a value between O and -1, depending on the
elastic anisotropy.

This calculation is dependent upon the assumptions made and as such
represents an initial attempt to 1incorporate the effects of elastic
anisotropy on a model based on a continuous distribution of dislocations.
Even though the model is strictly valid only for screw dislocatioms, it can
be extended to edge dislocations with minimal error. The results obtained
here can be viewed as a rough approximation to the correct solution based
upon a model of two welded anisotropic half spaces.
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