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ABSTRACT

The paper presents an application of mixed finite elements based
on Reissner's variational principle to the determination of
combined mode stress intensity factors for general crack problems.
The crack tip elements do not contain any built-in stress singu-
larities. Relatively coarse meshes with a compatible mixture of
mostly linear elements and a few aquadratic elements near the crack
tips have been emploved. Several numerical examples that illus-
trate the accuracy and efficiency of the analysis are presented.

KEYWORDS

Combined mode stress intensitv factors; mixed elements.

INTRODUCTION

The finite element method has been used extensively to evaluate
Mode I as well as some combined modes I and II stress intensity
factors. The major difficulty in the application of the finite
element technique to crack problems is due to the singular nature
of the stress field near the crack tip. Kobayashi and others
(1969) and Chan, Tuba and Wilson (1970) estimated the stress inten
sity factors by fitting displacement-based element solutions for
the near tip crack surface displacements with the analytical
expressions. Highlv refined meshes were required near the crack
tip in order to accurately calculate the near field displacements.
Watwood (1970) and Anderson, Rugegles and Stibor (1971) used strain
energy release rates computed from displacement-based element
analysis. Better accuracyv was obtained with relatively coarse
meshes, but in combined mode cracks the stress intensity factors
for the two modes could not bhe separated. Pian, Tong and Luk
(1971), Atluri, Kobayashi and Nakaecaki (1975) and Barsoum (1976)
used special crack tip elements with the correct stress singula-
rities. Excellent accuracy was obtained by using substantially
smaller number of elements.

905


User
Rettangolo


906

Recently, Mazumdar and Murthy (1979) have presented highly accu-
rate results of the application of mixed elements to the determi-
nation of Mode I stress intensity factors using relatively coarse
meshes without resorting to any singular crack tip elements. Use
of mixed elements was motivated by the fact that mixed elements
are considerably more accurate than other comparable elements and
are highly effective in capturing steep stress and displacement
gradients. In the present paper, the results of the application
of mixed elements to the determination of Mode I and Mode II
stress intensitv factors for combined. mode crack problems are
discussed.

MIXED ELEMENTS

The formulation of the regular mixed elements used in the present
study has been described in detail in Mazumdar and Murthy (1979)
and will not be repeated here. The elements are based on Reiss-
ner's variational princivle utilizing both stresses and displace-
ments as the unknown variables. Compatible mixtures of mostly
linear elements and a few quadratic elements near the crack tips
have been emploved. Such mixtures of compatible elements have
been conveniently generated by using isoparametric formulations.
Same interpolation functions have been used for both the stresses
and the displacements within an element. Triangular elements
used at the crack tips for egrading the meshes have been obtained
by aporopiatelv degenerating the quadrilateral elements (Zienkie-
wicz, 1973).

SEPARATION OF Ky AND Ky7

The mixed element solutions for the displacement components U
and V (Fig. 1) for two nodes i and p on the two crack surfaces
at the same radius were first transformed to directions parallel
and perpendicular to the crack line by the standard operations
u=Ucosn + Vsinn and v=-Usint+ Vcosn. The crack opening dis-
placement (COD) and the crack sliding displacement (CSD) were

Fig. 1 Separation of Mode I and Mode II
displacements
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taken as E(vi —vb) and E(lH —uD) respectively. The stress

intensity factors for the two modes were then calculated by the
least square fitting of the two modes of crack surface displace-
ments for nodes close to the crack tip with the analytical
distributions. The stress intensity factors were also estimated
by fitting the solutions for the stresses on the crack extension
line, but were found to be less accurate.

COMPUTAT IONS

A FORTRAN IV computer program based on the analysis described
above was written. The program is extremely short and simple
because of the simplicity of the mixed isoparametric formulation.
The program is fully automatic including the computation of

Mode I and Mode II stress intensity factors. The element matrices
for the mixture of elements are generated through a general inter-
polation function routine. For the solution of the system equa-
tions, an efficient Gauss elimination routine that exploits the
prominent 'skyline' feature of the system matrix caused due to the
mixing of linear and quadratic elements has been developed.

NUMERICAL RESULTS

The results of the analvsis oresented above for three combined
mode crack problems with known solutions are given below. In each
problem only two lavers of quadratic elements were used near the
crack tip. The size of the elements at the crack tip was taken

as one-twentyfifth of the crack length.

Obligue Edge Cracked Tension Plate

The geometry and finite element breakdown of a tension plate with
an oblique edge crack is shown in Fiz, 2. Because of asymmetry,
the entire plate had to be used in the analysis. For a/b= 0.4,
the mesh composed of 63 elements and 111 nodes. Figure 3 shows a
comparison of the computed values of Ky and Kyp with the modified
mapping-collocation solution by Bowie (1973). An excellent agree-
ment between the two solutions for Ky is noted for short cracks,
but slieh*tly higher values of the stress intensity factor are
predicted for deep cracks by the present analysis. Attempts were
not made at the refinement of finite element grids for the deep
cracks to study the convergence of the solution. The agreement
of the two solutions for Ky1 is excellent for short as well as
deep cracks. For a/h=0,4, an error of +1.74 percent in K1, and
an error of +1.79 percent in Ky1 were noticed in the present
solution.

Central Curved Cracked Tension Plate

Figure 4 shows the geometry and finite element representation of
a plate with a central quarter-circle crack. Due to symmetry,
only one half of the plate was needed in the analysis. A total
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Fig. 2 Element breakdown of a tension plate with edge crack in a tension plate
an oblique edge crack
TABLE 1 Stress Intensity Factors for a Central Quarter-
of 76 elements with 132 nodes were employed. Elements with Circle Crack in a Tension Plate
curved boundary were used for the curved crack. The same plate
was used for biaxial and uniaxial tension. A comparison of the Present Sih, Paris and, Percent
computed values of Ky and Kyy with the complex variable stress- analysis Erdogan (1962) difference
function solution bv Sih, Paris and Erdogan (1962) is given in K K K K K Kip
Table 1. The correct values of the stress intensity factors T IT I II I
for uniaxial tension re-derived in Atluri, Kobayashi and Nakagaki Biaxial
(1975) have been used in the comparison. Slight discrepancies tension 1.227 -0.526 1.201 -0.498 +2.16%5 +5.62%
are found in the two solutions for Ky, but the computed values .
of K11 are not as accurate. The discrepancy between the two Uniaxial
' t i 0.8 -0.944 0.8 -0.906 +0.24% +4.1
solutions is probably to some extent due to finite width effect ension = 11 ° o

in the computed stress intensity factors.

8Infinite plate solution
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Crack tip detail

Fig. 4 Element breakdown of a plate with a central quarter-
circle crack (biaxial and uniaxial tension)

Centre Cracked Tension Plate with Ad jacent Edge Cracks

The geometry and finite element model of a tension plate with a
centre crack and four adjacent edge cracks is shown in Fig. 5.
Exploiting the double symmetry, one quarter of the plate was
subdivided into 67 elements and 132 nodes. Table 2 shows a compa-
rison of the computed values of Ky and Kyy for the edge cracks

with the crack tip hyvbrid sineular element solution of Pian, Tong
and Luk (1971). The agreement between the two finite element
solutions for the edge cracks is good. The value of Ky for the

centre crack is not reported in Pian, Tong and Luk (1971).

Crack tip detail
Edge crack

Crack tip detail -
Centre ecrack

Fig. 5 Element breakdown of a tension plate with a
centre crack and four adjacent edge cracks

TABLE 2 Stress Intensity Factors for a Centre Crack

and adjacent edege cracks in a tension plate

Present Pian, Ton aand
analysis Luk (1971
K1 K1z K1 Krr
Centre crack 4,723 - - -
Edge cracks 4,804 -0.920 4,70 -0.94

8Finite element solution
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CONCLUSION

A mixed finite element procedure for the determination of
combined mode stress intensity factors for general crack problems
has been presented. The numerical results demonstrate that
fairly accurate estimation of combined mode stress intensity fac-
tors can be obtained by using relatively coarse meshes of mixed
elements without resorting to any crack tip singular elements.
Due to the generality and accuracy, the mixed elements can be
usefully employed in fundamental studies on fracture mechanics.
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