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ABSTRACT

Failure due to hole coalescence initiates in regions where the local concen-
tration of voids is greater than average. Such a region can be regarded as &
porous imperfection embedded in a less porous matrix. The stress and strain
fields around such an imperfection are examined using a dilating plastic fin-
ite element technique to determine the local void growth rates and deformat-
ion within the imperfection in uniaxial tension.
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INTRODUCTION

Homogeneous plastic deformation can be terminated by the localisation of the
plastic strain, which leads to failure with very little additional remote
strain. Rudnicki and Rice (1975) have provided the most complete analysis of
this process for a dilating continuum, taking the view that it can be regard-
ed as a bifurcation in the homogeneous flow field without the necessity of
modelling the interaction of discrete voids which lead to ductile failure.
Rice (1976) however has noted that with realistic average porosities the pre-
dicted bifurcation strain is too high to be directly responsible for failure.
This may be reconciled by noting that failure is likely to initiate in reg-
ions where the statistical distribution of inclusions leads to higher than
average initial porosities. Yamamoto (1978) idealised such regions as un-
bounded planar bands of imperfection within the material. These allow homo-
geneous deformation fields inside and outside the band, while a finite strainr
discontinuity at the interface permits the deformation rate inside the band
to become very much greater than that in the remote field. As a conseguence:
of the strain concentration, the local conditions for unbounded deformation,
as defined by Rudnicki and Rice (1975) for within the inhomogeneity, can be
met at realistic values of the remote strain.

Inhomogeneities in the form of parallel bands do exist in wrought steels and
are a major cause of their anisotropy. However, the unbounded planar inhomo-
geneities of Yamamoto (1978) were not strictly intended to represent features
of the metallurgical microstructure but were a formality by which inhomogen-
eities could be envisaged at all possible orientations, with localisation oc-
curring at the most favourable angle. The inhomogeneities which occur in the
microstructure of real materials are generally better represented in the form
of small volumes of highly porous material completely surrounded by material
of average porosity than as infinite planar bands. Such inhomogeneities per-
mit stress and strain gradients inside and outside the patch while the defor-
mation within the patch is severely constrained by the surrounding material.
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Such an inhomogeneity may be represented by an array of discrete voids with
less than average separation embedded in a field of voids of average spacing.
Alte;natively, the porous material may be considered as a dilating plastic
continuum with the embedded inhomogeneity represented as a patch of material
of greater thancaverage porosity. The latter approach is adopted in the pre-
§ent work in order to determine the local conditions near the inhomogeneity
in a range of stress states. In general the identity of the remote strain
state is not maintained near an imperfection of arbitrary shape (Hancock and {
arowq(l98§)). In the current work the simpler case of a spherical imperfect-

ion 1n‘unlaxial loading is considered so that the axisymmetric deformation is
maintained both locally in the imperfection and in the remote field. Such an
gna}ysis will determine the existencz and nature of the strain concentrations

inside the imperfection and their influence on the local void growth rates.

NUMERICAL ANALYSIS

Tﬁe analysis was performed with the MARC finite element program as modified by
Rice and Tracey (1969) which models dilating plastic materials on the basis of
a.dgvelopnent by Parks (unpublished). The program has a finite strain capa-
blll?y bgsed on the analysis of McMeeking and Rice (1975) with the stress and
strain fields determined incrementally using the variational principle of Nag-
tegaal, Parks and Rice (1974) applied over a mesh of dilating isoparametric
qgadrllateral elements. The matrix was represented by a perfectly-plastic Von
Mises yield surface:

ﬂ:(a/ﬂ'o)-].:O

where G is the effective stress defined in terms of the stress deviators
s.. by the relation:
1] & - (3/2)s, .s
h iJ7i]

and 0 , is the yield stress in uniaxial tension. The plastic strain com-

ponenfé are determined from the associated flow rule for the Von Mises yield
function, ie the Prandtl-Reuss equations. An elastic modulus (E) of 210.0 1
GPa and a matrix yield stress (o) in uniaxial tension of 0.14 GPa were
chosen'to give a constitutive reébonse representative of a low yield, non-
hardening matrix. The effect of porosity is introduced into the yield surface
through a pressure dependent term g to give:

g = (2/6) - 9(Z,,f) = 0

where f is the current void volume fraction, Z is defined in terms of the ag-
gregate stress deviators Sij from:

2
"= (3/2)sijsij

anq g K is the Frace of the aggregate stress tensor. In the light of an
original analysis by Gurson (1977), Tvergaard (1982) has suggested that

9(2,,,7) = (1 + 2.25¢%) - 3fcosh(z,, /(25))

§ettiqg f = 0 recovers the Von Mises yield surface for a non-porous material, !
in which Z'é'z (o RN For a isotropic material, normality of the mat-

rix deformd¢ion ﬂﬁblies normality of the aggregate (Bishop and Hill (1951))

and hence the existence of an associated flow rule through the relation:

dEpij = dA (39/92;5)

in which the pressure dependence exactly matches the dilation rate, which can
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be written: _ _
dEkk/dEp = (1.5fsinh(Z,, /(25)))/(Z/3)

The aggregate flow stress 7 can be updated from the aggregate deformation and
the properties of the non-hardening matrix through the work relationship:

7. . 0P, . = (1-f)5deP
ij 1]

in which the work done by the external stresses is dissipated by incompress-
ible plastic flow in the matrix. The matrix strain & is then a convenient
measure of deformation. Rudnicki and Rice (1975) note the importance of the

aggregate hardening rate, defined as:
H = (1/0 ) (dZ/cEP)
which determines of the stability of homogeneous deformation.
ANALYSIS

In order to get a feel for the likely porosities in an inhomogeneity, the
Poisson distribution may be evaluated using data appropriate to Swedish Iron
which contains a volume fraction of 1% spherical inclusions with an average
diameter of 5 um. Any volume V of material may be partitioned into cells

of volume 8V which contain on averagg one inclusion. Attention may now be
focussed on a small volume V = 10 mm~ in the centre of a tensile specimen og
such material, where failure initiates. This volume V will contain 1.5x10
cells with an 80% probability that at least one cell in V will have an inclus-
ion concentration factor of 10 or more. The numerical values are not critical
but there is clearly a high probability of finding inhomogeneities with inclu-
sion concentrations an order of magnitude greater than average.

An inhomogeneity of this nature was modelled by the finite element grid in fig
1 in which the 50 elements in the 5 innermost rings have greater than average
porosities. The remote boundary was specified to be at a distance of 6 times
the radius of the inhomogeneity. An initial porosity of 11% was specified for
the innermost ring with 10% initial porosity for the elements in the 4 adjac-
ent rings. This ensured that yielding initiated at the centre of the patch
and that the conditions at the centre were not dominated by the proximity of a
sharp interface with the less porous environment.

The finite element model was subjected to increments of displacement loading
on the remote boundary (y = constant) up to a final remote uniaxial strain of
the order of 30 times the initial yield strain. Contour plots (figs.2,3) of
stress and strain quantities show only small gradients both inside the patch
and in the remote field, throughout the whole of the loading history although
stress and strain gradients are produced near the interface. The sharply de-
fined interface is an extreme case, compared with which a more realistic dif-
fuse interface might be expected to produce lsss severe deformation gradients.
Both locally and in the remote environment, 8" developed linearly with the
remote strain as shown in fig.4. From this it is apparent that there is
little strain concentration within the imperfection although the porosity has
a marked effect in relieving the aggregate effective stress Z (fig.5). How-
ever, as the hydrostatic stress is also reduced in the same way, the ratio of
Z, /7 is relatively insensitive to increasing deformation. The strain con-
cehtrations which develop in the environment of the interface aid the propaga-
tion of the damage throughout the material. while the porosity increased
throughout the field (fig.6), the ratio of the porosity in the patch to the
remote porosity remained constant throughout the deformation history (fig.7).



DISCUSSION

The contained porous imperfection analysed in the present work may be regarded
as intermediate between an arbitrary volume of average aggregate material and
a void, which can be thought of as an imperfection in which the local porosity
f = 1. The effect of hydrostatic stress in intensifying the strain concentra-
tion and deformation gradients near a single void are well known from the work
of Rice and Tracey (1969), McClintcck (1968) and Budiansky, Hutchinson and
Slutsky (1981), and the porous inhomogeneity shows similar effects whereby in-
creasing triaxiality intensifies the strain gradients close to the interface
as well as enhancing the matrix strain concentration and the dilation rate
within the inhomogeneity. Not surprisingly, the enhanced porosity of the im-
perfection has a significant effect in lowering both 2 , and Z, but in such

a way that the ratio of Zk /Z is relatively insensitivé"to increasing gegor_
mation. For this stress s%ate, the normalised void growth rate df‘/(dem )
expressed in terms of the remote strain is the same both in the inhomogeneity
and in the remote field. The ratio of the dilations reflects the ratio of the
initial void volume fractions at these locations. This growth rate is similar
to the value of approximately 1 determined by Budiansky, Hutchinson and Slut-
sky(1981) for a single void in an infinite, strongly hardening matrix (m = 3).
While the need for a simple yield surface may prevent the ideal case being
realised exactly, it is natural to find that the growth rates for voids in a
porous material with low void volume fractions (f = 0.01), subject to moderate
triaxialities, are close to those for a single isolated void in a similar
stress state. It is of more significant to note that the enhanced porosities
in the imperfection show similar growth rates to those for a single void. The
effect of the deformation is to exacerbate the difference in porosity between
the imperfection and the remote field so that failure initiates in the imper-
fection before the surrounding material. For a nonhardening matrix, the hard-
ening rate of the porous aggregate will be negative throughout the deformation
history, particularly in the highly porous patch. It is of interest to note
the kinematic constraint on the inhomogeneity, exercised by the surrounding
average material. This implies that conditions will be locally favourable
for void coalescence without such failure occurring over a size scale suffic-
ient to cause immediate macroscopic failure and local perturbations in poros-
ity have an important bearing on the ductile failure process.
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fig 1. Finite element grid. The imperfection
is contained within the five innermost rings.
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Fig 2. Effective plastic strain in Fig 3. Flow stress in the vicinity
tgs vicinity of the imperfection of the imperfection (Z = 0.9800 at
(8 =24e, at contour 2400, €, :24e0). contour 980, & = 2460).
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Fig 4. Matrix strain concentration within the imperfection.
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Fig 5. The development of matrix and aggregate effective
stresses (3 and Z) in the imperfection and in the remote
field. For G, the local and remote curves are collinear.
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The development of porosity ('f‘) in
the imperfection and in the remote field.

Ratio of local to remote porosity.
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