CONSTRUCTION OF A FAULT TREE USING
PROLOG

S. Fukuda
Welding Research Institute, Osaka University 11-1, Mihogaoka, Ibaraki-Citv, Osaka 567, Japan

ABSTRACT

This paper shows that the programming language Prolog provides a very useful
and versatile tool for constructing a fault tree for failure and fracture-
related problems. Prolog not only reduces the time and trouble in developing
a fault tree, but it also injects inferring ability into a computer. There-
fore, it provides a very good man-machine interface for making inferences
and arriving at an adequate conclusion.

KEY WORDS

Fault tree analysis; fracture prevention; artificial intelligence; knowledge
engineering; Prolog

INTRODUCTION

As machines and structures are being operated under more and more severe
conditions and are becoming more complex, multifaceted and gigantic than
ever before, the prevention of their failures is becoming one of the most
important problems.

Fault tree analysis is known to be one of the most versatile and useful tools

for analyzing failures of quite complicated systems. But in the case of

fracture-related problems there are certain difficulties in constructing

a fault tree; two such major difficulties are

(1) It is not so straightforward to develop a fault tree as in the case of
control systems for mechanical failures, since the structure of the
problem is not so well defined mathematically. Hence, a trial and error
method has to be more often used for developing a fault tree.

(2) To well define the structure of the problem, it is necessary to describe
the content of a node more accurately than in other fields. Therefore,
symbolic manipulation is most essential in this field.

This paper points out that by adopting the progamming language Prolog, we
can eliminate the above difficulties in constructing a fault tree in the case

937

User
Rettangolo

938

of failure and fracture-related problems and can make a knowledge engineering
approach to the problem.

KNOWLEDGE ENGINEERING AND PROLOG: SIMPLE EXPLANATION

Apart from a very rigorous definition, Knowledge Engineering (Feigenbaum,
1977) may be said to be one field of applied artificial intelligence where
a man's knowledge (which includes experience) is implemented as data on a
computer and intelligent processing of information is carried out.

To carry out intelligent processing of information, an adequate selection of
the tool, i.e., the programming language is inevitable. Therefore, we have to
use the programming language suited for manipulating symbols. Although
Fortran is otherwise useful, it is developed for processing numerical values
and is not suited for this purpose. Prolog (Kowalski, 1977) is one of the
most useful tools for manipulating symbols and is considered in Japan as a
promising language for the computers of the coming generation, i.e.,

the computers of the fifth generation (Motooka, 1981).

Prolog is based on the first order predicate Togic. An example of such logic
is given below.

Major premise: Every human is mortal
Minor premise: Socrates is a human
Conclusion: Socrates is mortal

In other words, if the following two sentences are given,

V x. human (x)— mortal (x)
human (Socrates)

then a computer infers that
mortal (Socrates)

In Prolog/KR developed by Nakashima (1983), these statements are expressed
as follows;

: (ASSERT (MORTAL *X) (HUMAN *X))

(ASSERT (MORTAL *X-0000) (HUMAN *X-0000))
: (ASSERT (HUMAN SOCRATES))

(ASSERT (HUMAN SOCRATES))

: (MORTAL *X)

(MORTAL SOCRATES)

The symbol : is a prompting from a computer which appears on a CRT. The
sentences after the symbol : are inputs to the terminal, whereas the follow-
ing sentences are outputs from the computer, assuring that those input
sentences have been accepted. The third input sentence is a question as to
whether it is true or not that if Socrates is a human, he is mortal. As the
value Socrates is assigned to the variable *X, (MORTAL *X) means the question
whether Socrates is mortal or not. As it is already asserted in the first
input sentence, the answer that it is true is returned. The last sentence
(MORTAL SOCRATES) means that the computer returned the "TRUE" answer. If the
answer is "NO", then the computer returns "NIL".

Now, the fault tree of Fig. 1 (b) is
constructed on the computer. We will
start asking.

939
FAULT TREE ANALYSIS USING PROLOG: SIMPLE ILLUSTRATION

A fault tree is a graphical technique that provides a systematic description
of the combinations of possible occurrences in a system, which can result

in a 'fault' or 'undesired event'. It is a schematic representation of the
inter-relationships between the different 'basic events' and the 'undesired
event'. The inter-relationships are shown using Boolean logic symbols.

A rectangle represents an 'event block', which describes that the event is
caused by the combination of fault causes through the input gate. A diamond
represents an ‘undeveloped event' and the circle represents a 'basic event'.

An 'OR' gate shows a logical relationship, that the output event will happen
if and only if one or more of the input events happen. An 'AND' gate shows

a logical relationship, that the output event will happen if and only if

all the input events happen.

The following knowledge provides the basic tool for constructing a fault tree
using Prolog. The relations on the left hand side are expressed correspond-
ingly in Prolog on the right hand side.

If B occurs, then A occurs. = ------ (ASSERT (A) (B))
If B and C occur, then A occurs. ------ (ASSERT (A) (B) (C))
If B or C occurs, then A occurs. ------ (ASSERT (A) (B))

(ASSERT (A) (C))
And the fact that the event B really happens is expressed: (ASSERT (B))

We will illustrate how the conversation is carried out on a computer by
taking a simple eletrical circuit shown in Fig. 1 (a) as an example. The
graphical representation of this fault tree is given in Fig. 1 (b).

: (ASSERT (NO-LIGHT)

(NO-CURRENT-IN-A))

(ASSERT (NO—LIGHT) SWITCH 2
(TO-CURRE?T-IN-A)))

: (ASSERT (NO-LIGHT

(NO-CURRENT-IN-B)) SWITCH 1

(ASSERT (NO—LIGHT)

(NO-CURRENT-IN-B)) o

: (ASSERT (NO-CURRENT

ZIN-A) (SWITCH-1- L’,,,f'
FAILURE))

(ASSERT (NO-CURRENT-

I?—A)(SNIICH—]—FAILURE)) —_— SWITCH 3

: (ASSERT (NO-CURRENT-

IN-B) (SWITCH-2-FAILURE) A —¥— B e
(SWITCH-3-FAILURE))

(ASSERT (NO-CURRENT-
IN-B) (SWITCH-2-FAILURE)
(SWITCH-3-FAILURE))

Fig. 1 (a). Sample system

: (ASSERT (SWITCH-1-FAILURE))

940

NO LIGHT SYMBOLS
()
’ . D TOP EVENT
NO CURRENT NO CURRENT
IN A IN B
INTERMEDIATE
- [::j EVENT
UNDEVELOPED
EVENT
BASIC
EVENT
ig. . Fault tree for sample system
Fig: 1 ks B ’ t;:;h '"OR' GATE
t;t;) 'AND' GATE
(ASSERT (SWITCH-1-FAILURE))
- (NO-LIGHT)
(NO-LIGHT)

Thus, the computer returns the "TRUE" answer to the question whether it is
true or not if the switch 1 fails, the Tight will not be on. We will examine
another case. But before we start another question, we have to withdraw.the
assertion that the event "Switch 1 fails" occurs. Otherwise this assertion
is still valid and unintentionally we will be examining the case we do not
wish to analyze. The assertion is easily withdrawn as follows.

:(RETRACT (SWITCH-1-FAILURE))
(RETRACT (SWITCH-1-FAILURE))

And then another case is examined,

: (ASSERT (SWITCH-2-FAILURE))

(ASSERT (SWITCH-2-FAILURE))

: (NO-LIGHT) .
3(STANDARD-ERROR-HANDLER "UNDEFINED PREDICATE" SWITCH-1-FAILURE))
St G

3(STANDARD-ERROR-HANDLER "UNDEFINED PREDICATE" SWITCH-3-FAILURE))
S G

NIL

The first message after (NO-LIGHT) means that (SWITCH-1-FAILURE) is not
asserted. As this event is already retracted, we input C for the prompt S:
to continue the search. Although the event (SWITCH-2-FAILURE) is assgrted,
the event (SWITCH-3-FAILURE) is not. asserted yet. Therefore, we"opta1n the
second message that (SWITCH-3-FAILURE) is not asserted. As "NEL is reﬁurqed
to the input C for the prompt S:, it is known that the event "NO-LIGHT" will
not occur even if the switch 2 fails.

: (ASSERT (SWITCH-3-FAILURE))
(ASSERT (SWITCH-3-FAILURE))

941

: (NO-LIGHT)

3(STANDARD-ERROR-HANDLER "UNDEFINED PREDICATE" SWITCH-1-FAILURE)
S% €

(NO-LIGHT)

This means that as the assertion "SWITCH-2-FAILURE" is still valid, the event
"NO-LIGHT" will occur if the switch 2 and 3 fail.

Thus, we can construct a fault tree, change its structure, and study what
will happen under the given situation quite easily without any difficulty
or trouble if we use the Prolog predicate function (ASSERT) and (RETRACT).

CONSTRUCTION OF A FAULT TREE FOR TRANSVERSE WELD CRACK USING PROLOG

As an example of a practical application, we will consider the construction
of a fault tree for weld cracking which occurs during the manufacturing
process of a pressure vessel.

Very strict control is carried out in welding a very thick section of a low
alloy steel such as 2 1/4 Cr- 1 Mo steel to prevent the initiation of a
transverse weld crack. This is because the structural integrity of a pressure
vessel is greatly endangered by the presence of this kind of crack. Therefore,
an intermediate post weld heat treatment is usually carried out to prevent

the occurrence of such a crack, although it requires a great amount of time
and energy.

Figure 2 shows an example of a fault tree for this case. The contents of the
Top Event and the Basic Events are shown in Table 1 and the contents of the
Intermediate Events are shown in Table 2 respectively.

It can easily be observed from the figure that once a fault tree becomes

very large, it is quite difficult to follow what is happening, although it

is generally said that a fault tree provides good visibility. Furthermore

it is quite difficult to write the content of each event in the figure because
visibility will be impaired more, although the description of the content

is necessary in such a fault tree for failures.

The Prolog version of this fault tree is as follows;

:(ASSERT (TRANSVERSE-WELD-CRACK)(EXCESSIVE-HAZ-HARDENING))

: (ASSERT (TRANSVERSE-WELD-CRACK) (EXCESSIVE-STRESSES))

: (ASSERT (TRANSVERSE-WELD-CRACK) (EXCESSIVE-HYDROGEN))

: (ASSERT (EXCESSIVE-HAZ-HARDENING) (IMPROPER-THERMAL-CYCLE)
(MATERIAL-HARDENABILITY))

: (ASSERT (EXCESSIVE-STRESSES)(EXCESSIVE-INTERNAL-CONSTRAINT)
(EXCESSIVE-EXTERNAL-CONSTRAINT))

: (ASSERT (EXCESSIVE-HYDROGEN) (HYDROGEN-DIFFUSION) (EXCESSIVE-
HYDROGEN-CONTENT))

:(ASSERT (v.vnen....

: (ASSERT (EXCESSIVE-HYDROGEN-CONTENT) (IMPROPER-FLUX)(EXCESSIVE-
HUMIDITY).)

The outputs from the computer are omitted to save space. Thus, a fault tree
is defined. And such predicates as (MATERIAL-HARDENABILITY), (HYDROGEN-
DIFFUSION), etc. means that such problems related with material hardenability

942

or hydrogen diffusion occur.

Suppose we wish to know what fault events trigger the fault event (IMPROPER-
THERMAL-CYCLE). The answer will be immediately and easily given by the input

(LIST).

:(LISTING IMPROPER-THERMAL-CYCLE)

(ASSERT (IMPROPER-THERMAL-CYCLE) (HOLD-TIME-AT-PEAK-TEMP)
(RAPID-COOL ING-RATE) (PEAK-TEMP-TOO-HIGH) (HEATING-RATE))
(LISTING IMPROPER-THERMAL-CYCLE)

And further let us suppose that some engineers say that hold time at peak
temperature and heating rate are not so influential we better eliminate
these factors from the fault tree. Then we simply input (RETRACT) as follows;

: (RETRACT (IMPROPER-THERMAL-CYCLE))

Then the above assertion is retracted so we assert again

: (ASSERT (IMPROPER-THERMAL-CYCLE) (RAPID-COOLING-RATE) (PEAK-TEMP-

TOO-HIGH))

In this manner or by utilizing the Prolog editor which is provided with a
quite powerful pattern-matching function, we can easily add, eliminate or
change any relation at any hierachical level, and by using (LISTING), good
visibility is provided, and furthermore we can understand at once what each
node represents because its content is fully described. And it should be
pointed out that in communicating with a computer, we do not have to worry
about the addressing problem as is the case with FORTRAN, BASIC or PASCAL
and all we have to do is just simply to input the sentences as we do on a
typewriter. Once the situation or the condition is thus given, the computer
infers and returns an appropriate answer.

TABLE 1 Top Event and Basic Events

TOP EVENT=TRANSVERSE WELD CRACKING

1=HOLD TIME AT PEAK TEMPERATURE
2=HEATING RATE

3=CARBON

4=MANGANESE

5=NICKEL

6=CHROMIUM

7=MOLYBDENUM

8=0THER HARDENABLE ELEMENTS
9=WIRE

10=FLUX

11=WELDING SPEED

12=WELDING CURRENT

13=WELDING VOLTAGE

14=THICKNESS

15=NUMBER OF LAYERS OR PASSES
16=DEPOSITION OR WELDING SEQUENCE
17=TYPE OF GROOVE

18=USAGE OF FIXTURE

19=BOUNDARY CONDITIONS OF JOINT
20=DIMENSIONS OF MEMBERS

21=TYPE OF JOINT

22=PREHEATING

23=INTERLAYER OR INTERPASS TEMPERATURE
24=POSTHEATING

25=INITIAL TEMPERATURE OF STEEL
26=THERMAL RADIATION FROM SURFACE
27=HUMIDITY IN WELDING ENVIRONMENT
28=SPECIFIC HEAT

29=THERMAL CONDUCTIVITY

30=DENSITY

31=STRUCTURAL DISCONTINUITY
32=GRAIN BOUNDARY

33=NONMETALLIC INCLUSION
34=LATTICE DEFECT

Fig. 2 Fault tree for transverse weld cracking in a heavy section
low alloy steel

943

944

TABLE 2 Intermediate Events

X1=HARDENING OF HAZ X8=HYDROGEN DIFFUSION IN WELD ZONE

X2=INTENSITY OF RESTRAINT X9=HYDROGEN CONTENT IN WELD ZONE

X3=HYDROGEN X10=COOLING RATE

¥4=WELDING THERMAL CYCLE X11=PEAK TEMPERATURE

X5=HARDENABILITY OF MATERIAL X12=DEFECT

X6=INTERNAL CONSTRAINT X13=LOCAL STRESS

X7=EXTERNAL CONSTRAINT X14=THERMAL PROPERTIES OF MATERIAL
SUMMARY

It is discussed that the programming language Prolog provides a very useful
and versatile tool for constructing a fault tree for fracture-related
problems, where the process of developing a fault tree often requires a trial
and error approach and full descriptions of the contents of nodes are more
often than not necessary. The advantage of using Prolog is that we can program
easily and communicate with a computer more freely without worrying about any
detailed aspects of programming rules or grammars. Thus, Prolog cuts down the
time and trouble in developing a fault tree and it provides us with a good
conversational tool. But what should be emphasized most is that Prolog injects
inferring ability into a computer. Therefore, it provides a very good man-
machine interface for making inferences and arriving at an adequate
conclusion.

ACKNOWLEDGEMENTS

The author would like to thank Prof. Eiiti Wada, Dr. Hideyuki Nakashima, and
Mr. Michio Kimura, Department of Mathematical Engineering, University of
Tokyo.

REFERENCES

Barlow, R.E. and F. Proschan (1975). Statistical Theory of
Reliability and Life Testing. Holt, Rinehart and Winston, Inc,
New York.

Feigenbaum, E. (1977). The art of artificial intelligence:I.
themes and case studies of knowledge engineering. IJCAI-5,
1014-1029.

Fukuda, S. (1980). An application of fault tree analys is to
weld cracking. Trans. Japan Welding Society., 11-1, 57-61.

Fukuda, S. (1980). An application of graph theory to the safety
and reliability of a pressure vessel. Proc. 4th Int. Conf.
Pressure Vessel Technology, London, 33-36.

Fukuda, S. (1980). Improvement of the safety and reliability of
a welded structure: an FTA approach. Proc. Int. Conf. Weld.
Res. Osaka, 89-94.

Fussell, J.B. (1976). Fault tree analysis -- concepts and
techniques. In E.J. Henley and J.W. Lynn (Ed.), Generic
Technigues in Systems Reliability Assessment, Noordhoff,
Leyden, 133-162.

Kowalski, R. (1974). Predicate logic as a programming language.
Information Processing - 74. North-Holland, Amsterdam.

Motooka, T. (1981). Fifth Generation Computer Systems. North-
Holland, Amsterdam.

Nakashima, H. (1983). A knowledge representation system: Prolog/
KR, Technical Report METR 83-5, University of Tokyo.

User
Rettangolo

