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ABSTRACT

Expressions for the crack-tip stress field in thin plates subjected to bend-
ing are derived using the three-dimensional eigenfunction expansion solutions
developed by Hartranft and Sih. The approach presented in this paper avoids
errors introduced by the Kirchoff boundary conditions in earlier work by

Williams. Expressions for the maximum shearing stress, Tmax® obtained from

the present approach are compared with those from Williams' solution and the
respective trajectories are illustrated for the case of skew-symmetric bend-
ing moments applied at infinity.
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INTRODUCTION

The eigenfunction expansion method was first applied by Williams (1957,1961)
to obtain series solutions for the crack-tip stresses and displacements in
cracked bodies subjected to extensional and bending loads. Williams' solu-
tions for the bending problem were, however, limited by approximations asso-
ciated with the application of Kirchoff's boundary conditions along the crack
border. Subsequently, Hartranft and Sih (1968), Knowles and Wang (1961), and
Wang (1970) analyzed this problem using Reissner's bending theory. Hartranft
and Sih (1968) and Knowles and Wang (1961) considered the case of symmetric
bending moments at infinity, while Wang (1970) analyzed the case of skew-
symmetric (twisting) moments at infinity. Hartranft and Sih's (1968) analy-
sis showed that the transverse shear stresses for symmetric bending at in-
finity do not contain singular terms. Wang's (1970) analysis indicates that
for skew-symmetric bending at infinity the transverse shear stresses contain
singular terms. A detailed study of Wang's (1970) analysis by Subramonian
(1980) identified certain truncation errors in Wang's evaluation of the
transverse shear stresses. The corrected solutions indicated that Wang's
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results are correct except for the existence of singular terms for the trans-
verse shear stresses. In the present analysis, similar conclusions are
reached using a simpler approach based on the three-dimensional analysis of
Hartranft and Sih (1969) and by introducing the conventional approximations
for thin plates in bending.

THREE-DIMENSTONAL EIGENFUNCTION ANALYSIS

A brief summary of the three-dimensional eigenfunction analysis by Hartranft
and Sih (1969) is included in this section. In this approach the displace-
ment vector u is first expressed in a double series as

I~ o )\m o
2uu = ) T or u (0,250 ) ¢))
m=0 n=0
where )\m (m=0,1,2,...) are the eigenvalues, u is Lame's constant, and the

(m)

3 wr(1m)) are functions of 6 and z only. From Eq.

components of u(m) (u(m) ,V
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(1) the corresponding stress components can be obtained using constitutive
relations for a three-dimensional isotropic body. Applying the crack border
boundary conditions (without introducing any approximations), the )\m (m=0,1,

2,...) are found to be the roots of the characteristic-value equation
sin Zn)\m =0 , (2)
which gives
A== , m=0,1,2,... (3)
Since the displacements must be bounded as r~> 0, negative values of m have
been excluded from Eq. (3). From Eq. (3), the double-series representation

of each component of the displacement vector in Eq. (1) can be reduced to a
single-power series in r, as

s, = § ¥V £ f5,2)
r n
n=0
vy = 1 2 g (0,2 )
n
n=0
_ T n/2
2uw,, = Z r hn(e,Z)
n=0

where fn’ g, and hn are unknown functions which will be evaluated using the

equations of equilibrium. From Eqs. (4) the expressions for the stresses
can be derived as
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In Egs. (4) and (5) the unknown functions fn’ g, and h ~—can be evaluated using

the equations of equilibrium in terms of displacements. Hartranft and Sih
(1969) have evaluated these functions for three-dimensional crack problems and
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provided the following results, where terms containing r °, r and r  have
been retained to determine whether they result in singular contributions to

L and T (TOT and 1., are evaluated using the equations of equilibrium for
thin plates as explained in the following section)
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In Eq. (6) the constants will be evaluated using the equilibrium equations

for thin plates and appropriate boundary conditions, after imposing the
assumptions for thin plates.

APPLICATION TO THIN PLATES SUBJECTED TO BENDING AND TWISTING

The equations of equilibrium for thin plates can be expressed in the form

My X Mo + Mir " Mgg
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where p is the transverse load on the plate and a, and qqy are transverse

shear forces. The following thin plate relationships

2 2 2
h _h” _h”
M=% % *» Mo~ 6 "ro * Moo T & %o (8)

can be employed,where h is the plate thickness, to apply the equilibrium con-

ditions to the stress components O Treo and %98 given in Egqs. (6). From

the first two equations of Egs. (7), qa. and qg can be evaluated subject to the

condition that the last equation there is also satisfied. Substituting for

Mrr’ MrO and M99 in Eqs. (7) allows a, and q, to be evaluated as
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Substituting for . and qg in the last of Eqs. (7) requires that Al—O when
p=0, or when the transverse load in the plate is zero. Hence for the case of

pure bending moments or twisting moments applied at infinity (transverse load
p=0), a, and a4 do not contain singular terms. For the case of symmetric

bending moments at infinity this conclusion agrees with the results of Hart-—
ranft and Sih's (1968) analysis for bending. For the case of twisting mo-
ments at infinity, the present results agree with the conclusions of Subra-—

monian (1980). Thus, for the case of thin plates without transverse load
(p=0), it is shown that Tis and Tas do not have singular terms, since for thin
plates
2
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where h is the plate thickness and z is the distance measured from the middle
plane of the plate. For the case of thin plates without transverse loads,
Hartranft and Sih's (1969) results given in Eqs. (6) are applicable, except
for the out-of-plane stresses which are modified according to the conventional
approximation for thin plates.
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The results of this analysis can be summarized as follows
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From a comparison of Egs. (12) with the results of Hartranft and Sih (1968)
and Wang (1970), it can be seen that

B, = RCNTEN

1
1

AFR VOL 2-D*



868

3K
(), -2, 2z, |
B, = 5 &G v, (13)

where K, = 3 M Va and K., = N Va .
1 hZ

6
2 h2
M~ and N are the uniform bending and twisting moments applied at infinity;
h is the plate thickness, a is the half crack length and z is the distance

from the mid-plane of the plate. ¢(1) and ¥(1) are the thickness correction
factors given by Hartranft and Sih (1968) and Wang (1970) respectively.

Comparison of the results of this analysis and the results provided by
Williams (1961) can be best illustrated using the trajectories of maximum
shear stress given as

2

2 %rr ~ %00 2
Tmax { 2 + Tre - (14)

Substituting for O.r> g0 9 from Egqs. (12) and (13), for the case of

skew symmetric bending moments at infinity (Mm=0,Nm=NO), gives

and T
r

2 _ 2 z.1 .2 1.2
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Williams' (1961) analysis gives
2. 2
2 Ky 2 2
T =————[30vcosO - 10(1-v)cos20+ (1-v) " = 6(1l-v)vcos36+25+9v-] . (16)
max
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Trajectories of maximum shear stress obtained from Eq. (15) are shown in Fig.
1, while those obtained from Eq. (16) are given in Fig. 2. Photoelastic ex-
periments reported by Jones and Subramonian (1983) indicate that the present
solutions are more accurate near the crack-tip than Williams' solutions (1961).

Tmax
K2

10

CRACK 0 0.01

Fig. 1. Contours of the maximum crack-tip shear stress in the plate tearing
mode using present solutions.
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Tmax = P
K2

CRACK 0 0.01

Fig. 2. Contours of the maximum crack-tip shear stress in
the plate tearing mode using Williams' solutions.

CONCLUSIONS

An approach is proposed in this paper for obtaining the crack-tip stress
field in thin plates subjected to bending moments. This approach employs

the three-dimensional eigenfunction expansion procedure proposed by Hartranft
and Sih (1969). The form of the crack-tip stress field is in agreement with
the results of Hartranft and Sih (1968) and Wang (1970) for symmetric and
skew-symmetric bending respectively. The difference between the results of

Wang (1970) and the present study is that the transverse shear stresses Tos

and L do not have singular terms in the present study. Maximum shear stress

trajectories are compared using the results of the present study and the re-
sults of Williams (1961) for the case of skew-symmetric bending at infinity.
The trajectories obtained using the present results are in better agreement

with the photoelastic test results reported by Jones and Subramonian (1983).
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