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ABSTRACT

It is necessary to develop the method suitable for Boundary Element Method
(BEM) to determine the stress intensity factors (K) simply and accurately.
New methods are proposed, using the solutions of the stress or the
displacement near a crack tip obtained by BEM analyses. The methods can
determine the accurate values of the stress intensity factors without any
modifications of the given BEM programs. These methods proposed are applied
to the BEM analyses for various two dimensional as well as three dimensional
crack problems. From these numerical results, it is concluded that the
present methods can be successfully applied to BEM analyses of K and can
satisfy both demands of simplicity and high accuracy.
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INTRODUCTION

Evaluation of the stress intensity factors, K, for cracks is necessary for
practical applications of linear fracture mechanics analysis. It becomes
especially important to analyze the stress intensity factors for three
dimensional cracks such as surface crack, because cracks observed in
structural components are mostly surface cracks. Two prominent numerical
methods which are used to analyze the three dimensional crack problems are
the finite element method (FEM) and the boundary element method (BEM). It
is well known that FEM has been successfully applied to the analyses of
crack problems. Recently the boundary element method has attracted special
interest as a powerful method to calculate the K values of three-dimensional
cracks (Kitagawa and co-workers, 1984; Palusamy and Shaw, 1981; Tan and
Fenner, 1979), since the BEM requires only the discretization of the
boundary of the domain considered. To deal with the stress singularity at
a crack tip in these numerical methods, some special devices or numerical
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techniques are necessary for obtaining accurate solutions of K. Various
techniques were developed and used in FEM analyses (Murakami, 1976; Yagawa
and co-workers, 1978; Yamamoto and Tokuda, 1973), while only a few
convensional methods were used in BEM analyses. This is an obstacle to get
the accurate solution of K by BEM. It should be useful if a new method is
introduced into the BEM analysis to determine the value of K accurately and
simply.

From this point of view, new methods suitable for the BEM analysis are
proposed to calculate the accurate values of K. The methods can determine
the values of K simply, using the direct solutions of the stress or the
displacement near a crack tip in BEM analyses and they can be applied to any
programs of BEM without any modifications of the programs.

The present paper describes the formulations of new methods and how to apply
these methods to the BEM analysis. And we show the numerical results of K
for various two-dimensional cracks and also surface cracks obtained by the
present methods. Attention is confined to the opening mode (Mode I) cracks
in the present paper. The usefulness and the accuracy of these methods will
be discussed in comparison with the conventional methods.

NEW METHODS TO DETERMINE THE STRESS INTENSITY FACTORS

Conventional Methods (Extrapolation Methods)

For comparison with our methods, the conventional methods to determine the
K values are described in the following. In a polar coordinates as shown in
Fig.l, the mode I stress intensity factor, KI’ can be defined as follows,

K, = lim /27r o_| = lim VZnr o* (1)
I y'6=0
>0 >0
. 2
K. = 1lim o1 2t v = 1im /=L y=* (2)
I r «+l 6=m r
>0 >0
where o* is the stress component in y-direction on the line of 6 = 0, v* is
the displacement of crack surface in y-direction on the line of 8 = =, G is

the shear modulus, « = (3 - v)/(1 + v) (plane stress), « = 3 - 4v (plane
strain) and v is Poisson's ratio.

Crack

Fig. 1. Coordinate system at the crack tip.
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In the conventional stress method and displacement method usually used in
the BEM to determine the K values, the values of /EF;'oy* and v2n/r v*

obtained are plotted against the distance r from the crack tip and the value

of KI is determined by extrapolating these values to the limit r = O.

However, these conventional methods have some problems on the accuracy of
solutions, the use of large number of fine elements near a crack tip and so
on. This is the reason why a new method is needed, To improve these
disadvantanges, the authors have proposed the hybrid extrapolation method in
the previous paper (Kitagawa and co-workers, 1984) which combines the
displacement method with the stress method. It is found that this method is
useful to some extent particularly when the division of elements near the
crack tip is coarse. However it has a limit in the accuracy, because it is
no more than one of extrapolation methods. Therefore, new powerful methods
will be introduced in the following.

Method Using Stress Near the Crack Tip (Proportional Stress Method)

Equation (1) can be written near the crack tip in the follwing, since KI is

given in general as K, = o_ vma F_, where o_ is an applied stress, a is
° a I a

T
crack length and FI is correction factor of KI'
oy* = KI/VZHr = o, /ma FI/VZWT (3)

Equation (3) suggests the method to calculate the K values. Equation (3)
means that the ratio oy*/FI is constant for any crack problems if the

relative distance r/a and the applied stress o, are taken as same values,

respectively. Based on the fact, the value of FI for an unknown problem can

be easily calculated from the ratio oy*/FI for a known problem (a standard

problem).

This method is essentially the same as the method which was proposed by
Murakami (1976) and has been successfully applied to FEM analyses. He used
the stress Gtip -~ Og for oy* in Eq.(3) to improve the accuracy of the
solution based on the concept of superposition in elasticity, where otip is
the solution of stress near the crack tip and Cg is that at the same point
in the field with no crack. He proposed this method in a slightly different
way from the present study. The authors showed a general expression of his
method in Eq. (3).

Paying attention to Eq.(3) again, it is found that the ratio oy*/](I is

constant if the absolute distance r takes the same values. Therefore the
values K, can be directly calculated from the ratio oy*/KI for a standard

problem in the similar manner to the method mentioned above.

Method Using Displacement Near Crack Tip (Propotional Displacement Method)

Similar methods can be derived from equation of the displacement near the
crack tip. Equation (2) is written as follows,
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v*/r = KI//an = oa/E FI//znr 4)

In this case, the ratio (v*/r)/FI is constant for any crack problems if the
r/a and the o, are the same, and the ratio (v*/r)/KI is constant if r is the
same. The FI or the KI is calculated from those values of a standard problem,
in the similar manner as mentioned adove. In this case, there is no need to
subtract the displacement component in the field with no crack, since the
displacement v* for the field with no crack is zero. This is the point
different from the proportional stress method. The method in this section

is originally developed in the present study.

Although the stress or the displacement near the crack tip easily contains
some numerical errors in the individual numerical analysis, these errors can
be excluded by use of the ratio of the stress or the displacement to those

in a standard problem. So it is expected that the proportional stress method
and the proportional displacement method can give the accurate solutions.

In fact, body force method (Nisitani, 1967; Nisitani and Murakami, 1974),
which is well known as a high accurate numerical method to calculate K, used
a concept similar to these methods. That is, body force method determines
the K by use of the ratio of the density of body forces distributed on the
given crack surface to that of a standard problem.

The present methods can be applied to any analyses, numerical or experimental,
if the stress or the displacement closely near the crack tip are obtained.
These methods are also applicable tc the analyses of not only two-dimensional
crack problems of the mode I but also three-dimensional crack problems and
mixed mode crack problems of the mode I and IT.

Procedures in the Application of the Present Methods to BEM Analysis

The present methods can determine the K values by use of the direct solutions
of the stress or the displacement near the crack tip in BEM analysis and can
be applied to any program of BEM. It seems that these methods are suitable
and useful for the BEM analysis. These methods are applied to the BEM
analysis as follows.

Crack Surface Fixed Surface

Element Element
® ¥ - H——% *~—X¥—=o
D C

Fig. 2. Elements near the crack tip.

Figure 2 shows an example of the division of boundary elements near the crack
tip, where the quadrilateral isoparametric elemtnts are used. In the present
analyses, the stress cyC at the crack tip node C in Fig.2 and the displacement
Vp at the middle node D are employed as the stress cy* in Eq.(3) and the
displacement v* in Eq.(4). Although of course these values are different from

i
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the theoretical values due to the singularity at the crack tip, they give
a kind of average values in the element and represent the values at a point

with a certain distance r*. If the sizes of the element near the crack tip
and the crack lengthes are the same in two crack problems, it is evident

that these values give the accurate values at the point with same distance r*
Now we assume that the problem A is unknown and the problem B is known or a

standard problem. The values of FI for an unknown problem A, FIA’ can be

obtained as follows, if F for a standard problem is given and the values

1B
of OyC or vy for a standard problem are obtained beforehand.

In the case that the relative sizes of elements r*/a are the same in both
problems,

(Oyc = %A
Bag, # D IS S Erg (Proportional Stress) 5)
(oyc - %8
(vy), T* vply @
F Sl B F 2 =B B F (Proportional Displacement) (6)
A" Ty ) B wy g IB
D’B A D'B A
where a, and ap are the crack length of the problem A, B, respectively. In

the case that the absolute sizes of elements r* are the same in both problems,

(o -0 ) /a

Fia = yC gC A B Bin (Proportional Stress) (7
(Oyc = %cls /  Ga
Vpla ag

FIA = — — FIB (Proportional Displacement) (8)

Vplg v/ %
It must be noted to subtract o from o in the proportional stress method in

the same manner as Murakami's method. In these methods, it is important
that the elements not only at the crack tip but also near the crack tip
must be same in both problems.

NUMERICAL RESULTS

To confirm the usefulness of these methods, the BEM analyses are carried out
on two or three dimensional crack problems. The BEM programs are developed
essentially after Lachat and Watson (1976). The quadrilateral isoparametric
elements are used as boundary elements and the quarter point (singular)
clements are placed at the crack tip at need. The method developed by
Lachat and Watson (1976) to improve the integration scheme is introduced to
our programs. The details of the BEM analyses are omitted in the present
paper, because the present methods can be applied to any BEM programs.

Two Dimensional Cracks Problems

The BEM analyses were carried out on three kinds of plate specimens under
uniform tension, such as, center cracked (CCT), single edge cracked (SEC)
and double edge cracked (DEC) specimens and the FI values are determined by

the present methods. The models analyzed are shown in Fig.3. The analyses

AFR VOL 2-F*
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Analysis models of plate specimens.

TABLE 1 FI Values Obtained by Use of the Present Methods

Me thod Use Of Displacement Near The Crack Tip Lse Of Stress Near The Crack Tip Ref.
No. of Nodes 04 ~ 424 154 ~ 170 2 404 ~424 154 ~170 22
Elm.Size r/a 7.81x1073 2.08x1072 2.50x 107" 7.18x1073 2.08x1072 2.50x 107! Values
' c L0 x107¢ | 1o xw0* | roxi02 1.0 x1076 1.0 x107% 1.0 = 1072
Cpu- Lime* sec 667 96 1 567 9 17 ot
§-a W Ve | F v F vk stip 09 F sp 99, F sep o9, F e
Element Singular Element _
ceonten | 025 [8-25721 [1.0563 [10. 1916 E 342444 11,0288 | 1169.85 | 10362 [ 711416 :l.037h 195. 999 51.0517 103916
crac | 0-3393 | 645868 | 10728 | 105237 | 355856 | 1.0690 | 120752 | 1071y | .92 | 1.0TI9 | 204.085 | 1.0639 1.07263
cr |05 718418 | base | LL6sM6 39.5005 | base | 1337.03 | base |B13.583 | base |227.634 | base | L.18666
0.625 |8.07341 | 1.3410 | 13.1289 | 1.3391 | 44.3743 | 1.3331 | 1512.33 | 1.3422 { 919.406 | 1.3410 | 257.066 | 1.3401 | 1.34142
SINGLE | 0.25 | 9.01137 | 1.4968 | 14.6769 | 1.4970 | 50.2745 | 1510 | 1688.37 | L4 [ 1027.66 | 14689 | 287.846 | 1.5005 | 1494l
BDGE | 0.3333| 107718 | 1.7892 | 17.5418 | 1.7892 | 59.6943 | 1.7933 | 2019.75 | 1.7925 | 1229.55 | 1.7934 | 541,642 DL7810 | 17843
CRACK [ 0.5 | 17.0100 | 2.8256 | 27.6909 | 2.8243 | 92.4488 | 2.7775 | 2.8338 | 194283 | 28337 | S2z.tuz | 2.7248 | 28266
SEC | 0.625 |26.8880 | 4.4661 | 43.5251 |4.4393 | 137.208 | 4.1220 L 4.4793 1.1493 210 suazz | A.4809
DOUBLE [ 0.25 | 6.69606 | 1. 1122 | 10.9104 | 11128 | 37.3392 | 1.1217 L1114 AR T
EDGE | 0.3333 [ 6.73822 | 1.1192 | 10.9786 Llea:njmziljz% 1260.23 | L1184 | 706,654 | 11182 | 214.258 | L1169 | 112
CRACK |05 [ 7.00147 | 11696 | 11,4739 | 11703 | 39.2617 | 11801 | 131750 meu BOLS5 | 11696 | 25,1 737 (1163
DEC 1 0.625 | 7.58417 | 1.2597 97 | 1.2606 | 42.2607 | 1.2696 | 1419.96 | 1.2602 | 864.771 | 1.2613 | 243.868 | 1.2713| 1.26
Element Normal Flement Fok ok
0.25 | ®.95370 | 1.0396 | 13.58K3 | 1.0400 [ 44.7412 | 1.0%5 [ 600034 | 10374 [363.211 | 1.0374 [96.4710 | L0282 | 1.03916
cop  |0-4333 | 862220 110730 | 14.0294 ]1.0738 46,3621 il.‘ bl | 619.647 | 10713 | 375.324 | 1.0720 | 100.339 | 1.0694 | 1.07263
0.5 9.53561 base | 15.5046 | base |51.1265 | base |686.363 | base |415.463 | base | 111.340 | base 1. 18666
0.625 |10.7730 | 1.3406 | 17.4824 | 1.3380 | 56.8413 | 1.319% | 776.753 | 13420 [ 470,232 | 13431 | 125,450 | nsoen | 142
SEC | 0.5 | 22.7011 |2.8250 | 2.8363 i i 2.8266
DEC 0.5  [9.40044 | 1.1698 676.279 | 1.1692 i ! 1163
* HITAC M200H SYSTEM (University Of Tokyo ) e . S it BoileEs. 6T . ik Gx B2 P
* % CCT; ISIDA, SEC ; Approximate Equation * B = 4/ g tan; - cos (m §72)
DEC ; NISITANI (Interpolation ) , + E=1, » =0.3
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were carried out under the three conditions; 1) fine division of elements
to obtain the highly accurate solution (404~424 nodes, parameter of

10'6),

simply (22 nodes, e =

10'4). The exact solution for the CCT specimen of a/w = 0.5 given by

Isida (1973) was employed as the standard solution in all cases.

integration & = 2) coarse division to obtain the solutions most

=2
10 7), 3) intermediate division (154~170 nodes,

£ =

Table 1 shows the results obtained by the present methods with comparison of
the reference values of FI (Isida, 1973; Nisitani, 1974; Tada and co-workers,

1973). It is found that the ratio calculated in the standard problem can be
applyed to all cases with different crack lengthes and different types of

specimen. The highly accurate solutions of FI are obtained in the case of

fine division and the satisfactory solutions can be obtained even in the case
of coarse division (The errors are within the level of 1% except for the

case of a/w = 0.625 in SEC and the cpu-time is less than 17 seconds). It
seems to be not so important to employ the quarter point element (singular
element) at the crack tip in the present methods, since there is little
difference in the accuracy of solutions between the results with and without
singular element (Normal element). In either case, the method using the
displacement is superior to the method using the stress as for the accuracy.

Stress Method = Displacement
%D\D F1 |Method
\DN{ =]
Narls
/ﬁqﬁﬁﬁi\f??Tj |
419}~
0™~ _1.360
~;/1.331.
CCT, Q/W=0625 0 e,
154 Nodes 13- OOO‘K\
Singular Elements
| L1

|
0.1 0.05 O 0.05 01

r/a

Fig. 4. FI values by the extrapolation methods.

Figure 4 shows the results obtained by the conventional (extrapolation)
methods in the case of a/w = 0.625 in CCT. Analyses are carried out under
the intermediate division condition. 1In this case, the displacement

extrapolation method and the hybrid method (Kitagawa and co-workers, 1984)
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give relatively the accurate values of FI' However the accuracy is still

lower by one order than that of the present methods as shown in Table 1.

In the case that the number of elements is not so large, the accuracy of the
solutions by the conventional methods falls down largely. It must also be
emphasized that the extrapolated values can vary, depending on which data

we use for extrapolation.

From these results, it is clarified that the present methods can be

successfully applied to the analysis of K in BEM and can satisfy the demand
of simplicity as well as that of high accuracy.

Surface Crack Problems

Based on the successful results in two dimensional cracks as mentioned above,
the present methods are also applied to a three dimensional crack problem.
The models analyzed are the plate specimen with a semi-circular surface

crack as shown in Fig.5. The plate size parameters t/b and h/b are 1 and 3,
respectively and the ratio of crack depth to plate thickness a/t is varied.
The solution for embedded circular crack of a/t = 0.1 is employed as the
standard solution, which can be considered as the crack in an infinite body.
pattern of division of elements on the cracked plane are shown in Fig.6.

Uniform Tension

Q=¢C
h/b=3
t/b=1

Fig. 5. Analysis models of plate specimen

with a surface crack.
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92 NODES 167 NODES 299 NODES

Fig. 6. Pattern of division of elements on the cracked plane.

Typical results of K. values along the crack front obtained by the present

1
displacement method are shown in Fig.7 in comparison with the results in
references (Kitagawa and co-workers, 1984; Nisioka and co-workers, 1979;
Raju and Newman, 1979; Yagawa and co-workers, 1977). The solutions obtained
by the present methods agree well with those by FEM (Nisioka and co-workers,
1979; Raju and Newman, 1979: Yagawa and co-workers, 1977) and they are

more accurate, in spite of only 92 nodes, than those by the extraporation
methods in the analysis of 308 or 299 nodes (Kitagawa and co-workers, 1984).
In the present methods, the values of the middle node on the crack front

can be used to determine the K value at the point and the flexible division
of elements near crack front can be introduced, which is useful for the
analyses of a semi-elliptical surface crack (Kitagawa and co-workers, 1984).
While in the extrapolation methods, it is difficult to use the values of
middle node because of the lack of data for extrapolation and the division
pattern of elements near the crack front is subjected to the restriction on
the extrapolation.

In this study, it is found that the present methods are also useful for the
analysis of three dimensional crack and it is expected that the BEM analysis
combined with the present methods can be extended to more wide use for the
analyses of three dimensional crack problems.

CONCLUSTONS

1). New methods to calculate the stress intensity factors are proposed.
Those are, a) the method using stress near the crack tip (Proportional
Stress Method) and b) the method using displacement near the crack tip
(Proportional Displacement Method).

2). These methods can determine the stress intensity factor simply and
accurately. These methods are suitable and useful especially for BEM
analyses.

3). It has been assured that these methods can be applied to the BEM
analyses for various two dimensional crack and also three dimensional crack
problems. It is found that these methods give the accurate solutions even
if the elements near the crack tip are fairly coarse.

4). It is expected that these methods are powerful paticularly for the
analyses of three dimensional crack problems by BEM.
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Fig. 7. Solutions of KI along the crack front.
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