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ABSTRACT

In this paper the line-spring model developed by Rice and Levy is used to
obtain an approximate solution for a stiffened cylindrical shell containing
an axial part-through surface crack. It is assumed that the stiffened shell
is subjected to an internal pressure. To formulate the shell problem,
Reissner's theory is used to account for the effects of the transverse shear
deformations. The bending stiffness of the stiffener is assumed to be zero.
The stre-s intensity factor is tabulated for open end and closed end shell
for different shell and stiffener geometries.

KEYWORDS

Line-spring; cylindrical shell; part-through crack; stiffened cylindrical
shell.

INTRODUCTION

Because of their potential applications to the strength and failure analysis
of such structurally important elements as pressure vessels, pipes and great
variety of aerospace and hydrospace components, in recent past the crack
problems in shells have attracted considerable attention. These cracks in the
shells generally start from surface scratches and in time they become through
cracks.

Attaching a stiffener to a structure may inhibit crack growth, and thus in-
crease the overall strength of the structure. The results found by Yahsi
(1983) for loosely stiffened shell containing an axial part through crack
clearly demonstrate that. Because of these reasons, from a practical point
of view a solution for a stiffened cylindrical shell containing an axial
part—-through crack may be extremely important.

In the solution of this problem, the line-spring model developed by Rice and
Levy (1972) is used to obtain approximate results. The results obtained from
the model for plates and shells containing a part—through surface crack
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(Delale and Erdogan 1981, 1982a) compare well with the solutions found from
the finite element and the alternating methods (Raju and Newman 1979a, 1979b;
Newman 1978, 1979). Another advantage of this model is its applicability to

a great variety of shell structures with a relatively small computational
effort.

In formulating the problem the solutions of a close end and open end shell
without the crack for the internal pressure are obtained and the problem is
reduced to a perturbation problem in which the self-equilibrating crack
surface tractions are the only external loads.

To formulate the shell problem, Reissner's (Reissner and Wan 1969, Naghdi
1956) shell theory is used to account for the effects of the transverse shear
deformations, and it is assumed that the cylindrical shell is thin-walled

and shallow.

The bending stiffness of the stiffener is assumed to be zero. Similar to other
crack problems, this mixed boundary value problem is reduced to a system of
two simultaneous singular integral equations and they are solved numerically.

The stress intensity factor is tabulated for bending and membrane loading
for different shell and stiffener geometries.

GENERAL FORMULATION

The part-through crack geometry for the stiffened cylindrical shell under
consideration is shown in Fig. 1. This shell is under internal pressure.

Line-Spring Model

This model has been developed by Rice and Levy in 1972 to obtain an approxi-
mate solution for a plate containing a part—through surface crack. In a shell
containing a part-through surface crack under membrane loading and bending,
the stresses in the net ligament would have a constraining effect on the
crack surface displacements. The basic idea in line-spring model consists

of: a) representing the stresses in the net ligament by a membrane load N and
a bending moment M and the crack surface displacements by an opening ¢ and a
rotation 0, all referred to the midplane of the shell and continuously dis-—
tributed along the length of the crack; b) by assuming that the relationship
between (N,M) and (8,8) may be approximated by that of the plane strain re-
sults obtained from the solution of an edge-cracked strip or a ring; c) by
using the boundary and the continuity conditions for the shell in the plane
of the crack, reducing the problem to a pair of integral equations for the
functions N and M or & and 0.

The relation between (N,M) and (8,6) may be obtained from the expressions of
the rate of change of potential energy in terms of crack closure energy and
change of compliance for the related plane strain problem as given by Rice
(1972), Delale and Erdogan (1981, 1982a),

—v2 )
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where,

o =N/h, m=6Mh? (2)
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and K is the total mode I stress intensity factor at the crack tip, L is the
depth of the edge crack and it is a known function of y.

Let the stress intensity factor for the strip be

K = /ﬁ-(ogt + mgb) (3)

By noting that, & = 2u(+0,y) and 6 = ZBx(+O,y) from (1) and (3) one can
obtain the following result

o(y) = Ely,(3) u(+0,y) * v () B, (+0,y) 1,

1]

m(y) = 6E[y, () u(+0,y) * v, (y) B (+0,y)] (4 a,b)

where + and - signs are to be used for the outer and the inner cracks,
respectively, and

= = = = e = 6hA
Yep = @0 /hA, Yy = 0 /36RA L Yy app/68 » Ype aoy ./
= - a2.)(1-v? 5 a-e)
A 6(att Y atb)(l v3) o, (
L (6)
L.o= = i g dL i,j = t,b) .
%55 N of 8; 83 (1,3 )

The functions g¢ and gp, give the membrane and bending components of the
stress intensity factor. They are obtained from the corresponding plane
strain crack geometry. For the axial crack, the proper plane-strain problem
would be that of a ring with a radial edge crack. But, as shown by Delale

and Erdogan (1982b) for large h/R values the ring results are very close to
the strip results. For small h/R values the convergence for the strip problem
is very slow, therefore obtaining gt and gp becomes rather complicated.
Because of these reasons in this paper the edge-cracked strip results will

be used for the axial crack problem.

For the strip the functions gy and gp are obtained from the results given by
Kaya and Erdogan (1980) which are valid for 0 < L/h < 0.8 and may be expresse
as

B L8] = JTE (1.1216 + 6.5200 £2 - 12.3877 £* + 89.0554 g®

~ 188.6080 E£° + 207.3870 £'° - 32.0524 £'%), (7a)
g, (E) = J/mE (1.1202 - 1.8872 £ + 18.0143 g2 - 87.3851 g3

+ 241.9124 £* - 319.9402 £° + 168.0105 £%), (7b)
where,
g = L(x2)/h = L(ay)/h (7¢)
From (6) and (7) the compliance coefficients Oy e (i,j = t,b) are found to be

12 12 18
_ (n),2n _ (n) .n _ _ r2 (n) .n _
Gy = & Z Cop 67 » Opp = &° Z Chp & » %p = O%pr = ° Z Gy & (BE S
n=0 n=0 n=0
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where CiJ values are given by Delale and Erdogan (1981).

Stiffened Cylindrical Shell With an Axial Part-Through Crack

Stiffened cylindrical shell containing an axial part-through crack is under
the effect of internal pressure only. Since the crack surfaces are free of
load, the problem can be considered as the superposition of the following

two problems; a) uncracked shell under the given load; b) cracked shell under
the effect of stresses acting on the crack surfaces which are negative of the
stresses obtained from the solution of problem (a).

In case (a) all the stresses are finite and there is no crack, so the stress
intensity factors will be zero. Since, we are interested in finding the
stress intensity factors, the main problem of interest is, therefore, the
stress perturbation problem defined in (b).

In the formulation of the crack problem for the shell, the derivatives of
the crack surface displacement and rotation are used as the unknown functions,
which are defined by

du(+0,y) /3y = Gi1(y), BBX(+0,y)/By =G2(y) (9 a,b)

The notation and the dimensionless quantities are given in Fig. 1 and in
Appendix A of the work done by Yahsi and Erdogan (1983). It is shown by Yahsi
and Erdogan (1983) that the problem of stiffened cylindrical shell containing
an axial through crack may be reduced to the following system of integral
equations:

1 Hy (1) 12
dt + [ ) ki.(T,mH.(t)dT=27 F1(n), -l<n<1, (10a)
i ™n -1 j=1 J J
1 Ho(T) 1 2 27hA*
(1-v?) [ dt + [ ] kp.(T,m)H.(T)dT = == F(n), -1 < n <1, (10b)
-1 ™n -1 j=1 3 J a

subject to the following single valuedness conditions

jl H, (T)dT = 0 , i=1,2 , (10c)
=,
where

n=yts , T=t+s , Hi(T) = Gi(T_s)’ i=1,2

s = (b+d)/2a , -d/a < y,t < -b/a , -1 <n,T< 1. (1la-c)
and kernels kij(T,n), (i,j = 1,2) are known functions.

Since we are working with a perturbation problem the self-equilibrating
crack surface tractions are the only external loads. In this case the loads
can be expressed as follows

Fi(m) =N (+0,n) , -1 <n<1, (12a)
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Fo(n) = M (+o,n) , “len=<l (12b)

X

Let Ny,(x2) and M,(x2) be the stress and the moment resultants at the crack
surface due to the internal pressure and N(x,) and M(x%,) be the net ligament
stress and moment resultants.

The input functions in (10) may then be expressed as,

Fi(n) = 0_/E + 6/E ,  Fo(n) = m_/6E + m/6E (13a,b)

where (+) and (-) signs are to be used for the outer and the inner crack
respectively, and

o(n) N(x2)/h = N(ay)/h = N(n)/h , (l4a)

m(n) = 6M(x2)/h? = 6M(ay)/h% = 6M(n)/h? . (14b)

From (9), (13) and the singular integral equations (10) one can obtain the
following singular integral equations

n n 1 1 Hi (D)
Yee (M [ B(DdT £y () [ Ho(DdT + — [ dt
=1 =1 2m -1 T-Nn
; I 2 o
+— [ ] k.(mD H(Ddt=-—, -l<n<l1, (15a)
2m -1 j=1 J ] E
n n 2 1 Hy(T)
type(m [ HDAT - v, () [ Hp(Dar + 22D dr
= -1 2mhAY -1 ™n
a 1 2 moo
+— [ 7 k(D) H(DdT = - =, -l<n<l1 (15b)
2th -1 j=1 1 6E

where (=) and (+) signs are to be used for the outer and the inner crack,
respectively.

SOLUTION AND RESULTS

The solution of the singular integral equations (15) is of the following forr

hi(r)
Hi(T) £ —_—,i=1,2 , -1 <T1<1 (16)
1=t
where hj(t), (i=1,2), -1 < T < 1 are unknown and bounded functions. In these

circumstances, the singular integral equations (15a), (15b) subject to single
valuedness conditions (11) are solved by using Gauss-Chebyshev integration
formulas given by Erdogan and Gupta (1972); Krenk (1978); Theocaris (1973).
After solving for h;(T) and h,(T), the net ligament stress and moment resul-—
tants 0 and m may be determined from the equations (4-6) and (9). The stress
intensity factor K(x2) = K(y) is then determined from (3) and (7). In the
examples considered in this paper Poisson's ratio Vv is assumed to be 0.3 .
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The numerical results are obtained only for a semi-elliptic surface crack
given by

L(x,) = L(ay) = L(an - s) = L(n) = Lo ¥ 1-n? a7
with different Lo/h ratios.

For various crack geometries and loading conditions the calculated stress
intensity factors are shown in Table l, and Fig. 2,3. In Fig. 4 stress
intensity factors at different penetration points are given. In these tables
and figures k; and ky show the normalized membrane and bending components of
the stress intensity factor. They are normalized with the corresponding edge-—
crack value for the plane-strain problem under tension or bending. This
normalizing stress intensity factor ko is given by

ko = Ko/Ym =N_v/hg (E)/Ymh , & =Lo/h (18)
for membrane loading, and

ko = Ko/Vm=6M_ /b g (£0)/¥7m h® , & = Lo/h (19)

for bending.

REFERENCES

Delale, F., and F. Erdogan (1981). The part-through surface cracks in a
reissner plate. Int. J. of Engng. Science, 19, 1331-1340.

Delale, F., and F. Erdogan (1982a). Application of the line-spring model to
a cylindrical shell containing a circumferential or axial part-through
crack. ASME Journal of Applied Mechanics, 49, 97-102.

Delale, F., and F. Erdogan (1982b). Stress intensity factors in a hollow
cylinder containing a radial crack. Int. J. Fracture, 20, 251-265.

Erdogan, F., and G.D. Gupta (1972). On the numerical solution of singular
integral equations. Quart. Appl. Math., 30, 525-534.

Kaya, A.C., and F. Erdogan (1980). Stress intensity factors and COD in an
orthotropic strip. Int. J. Fracture, 16, 171-190.

Krenk, S. (1978). Quadrature formulae of closed type for solution of singular
integral equations. J. Int. Math. App., 22, 99-107.

Naghdi, P.M. (1956). Note on the equations of elastic shallow shells. Quart.
Appl. Math., 14, 331-333.

Newman, J.C.Jr. (1978). A review and assessment of the stress—intensity
factors for surface cracks. NASA Technical Momerandum 78805.

Newman, J.C.Jr., and I.S. Raju (1979). Analysis of surface cracks in finite
plates under tension or bending loads. NASA Technical Paper No. 1578.

Raju, I.S., and Jr.J.C. Newman (1979a). Stress intensity factors for internal
surface cracks in cylindrical pressure vessels. NASA Technical Memorandum
80073.

Raju, I.S., and Jr.J.C. Newman (1979b). Stress intensity factors for a wide
range of semi-elliptical surface cracks in finite-thickness plates.-

J. Engng. Fract. Mech., 11, 817-829.

Reissner, E., and F.Y.M. Wan (1969). On the equations of linear shallow
shell theory. Studies in Applied Mathematics, 48, 132-145.

Rice, J.R., and N. Levy (1972). The part-through surface crack in an elastic
plate. ASME Journal of Applied Mechanics, 39, 185-194.

1043

Theocaris, P.S. and N.I. Iokimidis (1973). Numerical integration methods for
the solution of singular integral equations. Quart. Appl. Math., 35, 173-183.

Yahsi, 0.S. (1983). Gevsek gemberle takviyeli silindirik kabuklarda yiizeysel
gatlak. Proceedings of the 3rd National Conference on Mechanics, Bursa,

Turkey.

Yahsi, 0.S., and F. Erdogan (1983). Stiffened cylindrical shell problem.
Technical report, Lehigh University, Bethlehem. To be published.

Table 1. Normalized stress intensity factor k/k, at the
deepest penetration point L=Lo, of a semi—
elliptic axial crack in a cylindrical shell
under internal pressure; h/R=1/10, c/a=1.5,
As/h=l, v=0.3.
Lo/h a/h 2 4 10 2 4 10
outer A* |0.834 0.989 1.020 0.247x10:; O.295x10:i ~0.100x10_2
Crack B¥¥|0.902 0.988 1.020 0.864x10 0.103x10 -0.351x10
0.2
Inner A |0.819 0.971 1.010 0.242x10_ -0.289x10_i 0.976x10_5
Crack B |0.885 0.970 1.010 -0.847%x10 -0.101x10 0.342x10
K im b -2 -1 =3
Outer A [0.344 0.540 0.716 0.628x10_ 0.139x10_2 —0.607X10_3
Crack B |0.372 0.542 0.716 0.220x10 0.487x10 -0.212x10
e =2 =) =3
Inner A |0.308 0.465 0.643 —0.521x10_ —0.112X10_2 0.371x10_3
Crack B |0.333 0.467 0.643 —0.182x10 =0,393%x10 0.130x10
Outer A [0.112 0.207 0.351 O.ABOxlO:g 0.370x10_§ —0.168x10_2
Crack B |0.121 0.209 0.350 0.168x10 0.129x10 -0.587x10
0.8 -3 -2 —4
Inner A (0.100 0.169 0.282 —0.126x10_4 —O.230x10_3 0.178x10_
Crack B |0.108 0.169 0.281 —0.440x10 -0.804x10 0.622x10

A means open end cylindrical shell,*B means closed end cylindrical shell.

Fig. 1.
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The geometry of an axial part-through surface
crack in a stiffened cylindrical shell.
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Fig. 2. Membrane component of the normalized stress in-
tensity factor kp at the deepest penetration
L=Lo, of an outer semi-elliptic axial crack in
a cylindrical shell under internal pressure,v=0.3.
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Fig. 3. Membrane component of the normalized stress in-
tensity factor kyp at the deepest penetration
L=Lo, of an outer semi-elliptic axial crack in an
open end cylindrical shell under internal pressure.
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Fig. 4. Distribution of normalized stress intensity factor
km along the crack front in an open end, stiffened
cylindrical shell containing an inner or outer
axial semi-elliptic surface crack, v = 0.3,
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