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INTRODUCTION

Analytical solution of plastic strain concentration is a problem that has
remained unsolved for many years. It was believed to be too complicated.
At present, the only way out is by computer—aided numerical solutions which
cannot substitute for analytical solutions.

In fact, plastic strain concentration turns out to be much simpler than ex-—
pected. It can be calculated from elastic strain field using the rule of
sliding, contrary to the common belief that plasticity cannot be calculated
from elasticity.

The rule of sliding was calculated from tensile stress (Anon, 1977). The
tensile stress specimen elongates freely without hindrance, therefore the
rule of sliding obtained from it is associated with free sliding. It
happens that the plastic strain concentration factor is not affected by
plastic deformation, so there is nothing to interfere with the sliding;
therefore the rule of free sliding from tensile test diagram is anplicable.

For verification, Neuber's equation is used. Neuber's equation, when solved
together with the tensile test diagram, yields an empirical solution of
plastic strain concentration and the result is approximately the same as the
analytical solution mentioned above, only with a larger error than the ana-
lytical solution as compared with experimental data.

However, it is worthwhile to point out that in the ASME-Boiler Code it is
recommended that the imaginary elastic stress (higher than ultimate stress)
be used to calculate, approximately, the fatigue life of nozzles by fatigue
curve. This imaginary elastic stress is the same as that calculated by K
in Neuber's equation, and therefore, this imaginary elastic stress has begn
used empirically and successfully for more than 20 years.
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NONHOMOGENEITY OF MATERIAL AND SOLUTION BY RELAXATION

The analytical solution of plastic strain concentration is a problem which
has remained unsolved for more than half of a century. The solution is be-
lieved to be too complicated because of the fact that the stress—-strain law
during plastic deformation depends upon history of loading.

Fortunately, a technique is available which can be used to avoid these dif-
ficulties. It consists in resolving the stress above the yield value into
two components — elastic and ideal plastic stresses — which can be calcula-
ted separately and more easily.

This resolution of plastic stress is not new. Forty years ago, Timoshenko
(1946) used it to explain strain hardening (see Appendix). Accordingly, in
order to obtain the elastic component of stress o* from plastic stress o
Eq. (8) in the Appendix may be used:

* o =m' s

o /oS 1 m' ( 0/0S 1) (1)

where m' = m is usually called strain hardening index.

In the case of simple strain concentration problems such as for elliptical

holes, notches, etc., ¢* will be the elastic stress calculated by ordinary

theory of elasticity. This can be illustrated by the idea of relaxation as
follows:

(1) To illustrate that the stress concentration factor for ellipses do
not appreciably change because of plastic deformation, let us take
a 40 x 29 mm ellipse as an example. The increase of short diameter
will be approximately 7/ Pe o where P = b2/a = 102/20 = 5 mm. If
€nax 20%, then short diameter will increase less than 1 mm. Thus,
the stress concentration factor will change from originally 5 to
1 + 2 x 40/21 = 4.81 which is only 4% and, hence, is negligible.

(2) To derive that o* equals (elastic) concentration stress, the relax-
ation idea can be used. First, hold the plastic sliding fast so
that the specimen can act only elastically. The plastic sliding
is allowed to occur afterwards.

Since the stress concentration field does not change during plastic sliding
(Anon, 1977), a portion of cross section may be assumed to slide freely
while the other portion remains unchanged. This is just what happens accor-
ding to relaxation idea in the free sliding in tensile test specimens where
weakening and lengthening occur simultaneously. The rule of free sliding
(see Eq. (6) in the Appendix) yields:

ex/e — 1 = log e/e = 3.32 log ele (2)

2 S 10 s

For practical materials, of course, there are some deviations from the theo-
retical coefficient 3.32 and these can be calculated directly from tensile
test diagram.

EXPERIMENTAL CHECK AND MUTUAL PROOF WITH NEUBER'S EQUATION

In order to show the applicability of the technique, plastic strain concen-
trations at elliptical holes are measured (see Fig. 1) as shown in Fig. 2,
which agree with theoretical curve (hard duraluminum) quite well:

o
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* - = -
o /OS 1 2.46 log10 s/ss (3)

The theoretical curve is calculated from measured tensile test diagram as
follows:

(1) Plot the tensile test diagram on log-log paper using dimensionless
coordinates of stress O/OS and of strain ¢/¢ .
s
(2) Draw a straight line (or lines) through point ( O/OS=1, E/FS=1)

to represent the tensile test curve approximately, and measure the
inclination m.

(3) Calculate the elastic stress according to:

o*/aS -1 =m ( 0/0S - 1) (4)

(4) Plot the logE/Es - (0*/0S - 1) relation on semilog paper and measure
the inclination C to obtain the equation:

o*/o - 1= C log €/e (5)
s 10 s

For verification, Neuber's Equation is used. Neuber's Equation (Ke)2=Kpr,

in terms of external stress, o , can be written as follows:

s
(o*x Jo )2 =0 /o X € e s (6)
max s max s max s

An alternative for any o and € is:

(o* Jo_ )2 =gd/o x €le 7
max S S S

where o* denotes stress calculated by elasticity, as it may be much higher
than o 1in tensile test diagram which can be ZOS at most, while O;ax can be
10 when e/ss = 100.

Neuber's Equation is solved together with tensile test diagram to eliminate
a/os. We then obtain a 0*/05 - eleg relation shown in Fig. 2 by a dashed

line.

Neuber's Equation is an approximate
empirical equation, and in fact the
above mentioned elliptical hole ex-—
periments are a repetition of Neuber's
experiments. The present method
yields results which agree approxi-
mately with Neuber's Equation, as
shown in Fig. 2.

Fig. 1. Plastic strain concentration at elliptical hole.
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APPENDIX

Rule of Sliding:
Tensile test diagram can be approximately represented by exponential curves
as:
c/¢€ = (o/o )" or log e/e_ = m log o/o al)
s s s 2 8

Exponential curves of several carbon steels are plotted in Fig. 3 by dashed
lines.
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Fig. 3. Exponential curves of several carbon steels.

When plastic sliding occurs after yield point, the steepness of the curve
drops from elastic so that the specific stress U/oS decreases and specific

strain e/es increases. Yet the weakening and elongating effects of plastic
sliding are different for different steels.

Notice that there is only one variable m to denote the difference of plasticity
while the plastic sliding effects are two--weakening and elongating, therefore

if we fortunately can eliminate m by transformation, then the abscissa trans-—
formation will be free from m, i.e., the same for all steels. The two-step
transformations as a whole eliminates m, so the effect. of plastic sliding
is to restore the elastic relation:

e/e_ = (o/o_)!
s s
The two-step transformation is as follows:

(1) Use ordinate transformation to eliminate weakening.
By comparison of c/cs -1 & log c/cS in Table 1 for range of
2

c/oS = 1n 2 of tensile test diagrams for ordinary steels,
TABLE 1 Comparison of o/o_ -1 & log o/c of Tensile Test Diagrams for
Ordinary Steel. 2 8
olos = 1.0 1.2 1.4 1.6 1.8 2.0
c/oS = 0.0 0.2 0.4 0.6 0.8 1.0

log2 c/cs - 0.0 0.26 0.48 0.68 0.85 1.0
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it can be seen that, approximately:
chs—1= m%<ﬁ% (A2)
Therefore, equation (Al) becomes:
1 = -
o8, eleg=m (olo_ = 1) (A3)

Now let us transform ¢ to stress o* so that the plastic part of o
above Og is raised m times, i.e.:

m ( a/cs -1) = 0*/05 -1 (A%)
Then, from equations (Al) and (A2), we obtain:
0*/0S - 1= log2 e/es (A5)
This transformation not only eliminates m while the abscissa remains
untouched, but it also satisfies the transition condition at yield
point requiring continuity.
(2) Use abscissa transformation to obtain elastic line. From equation

(A5) it can be seen that if we transform to its linear scale,
s*/e - 1, as in equation (46), then elastic line will be obtained

as equation (A7) :

e*/es - 1= log2 e/ss (A6)

e*/es =1 c*/os -1 (A7)

Thus, equation (A6) is the required Rule of Plastic Sliding. To understand
the physical meaning of this transformation, the strain hardening mechanism
Timoshenko (1946) introduced may be used. An explanation follows.

Owing to grain orientation (and, of course, other nonhomogeneities) a portion
of material, say 1/m' of the total cross section, yields while the rest is
elastic. Therefore, the portion of load above yield point is solely carried
by the elastic portion; thus the apparent stress, assuming the whole cross-—
section carries the load, will be only 1/m' of the elastic stress existing

in the elastic portion of the material. Now that the external load is re-
leased, both the elastic and plastic portions will recover elastically and
create internal stresses at equilibrium.

—
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Fig. 4. Strain hardening mechanism.

Now if we want to calculate the elastic stress c*/c from the apparent stress
u/o , we simply multiply 0/0 - 1bym', i.e.:

0*/0s -1=m" ( o/cs -1) (A8)

Compare Equations (8) and (4) we see that the new elastic stress obtained by
lst step ordinate transformation is the elastic stress in the elastic portion
of material and the strain hardening index m equals m', the ratio of area of
plastic portion to the total cross-section.
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