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ABSTRACT
A numerical method for the determination of the dynamic stress
intenslity factors in finite cooa ;1 ooilics under haraonic load-—
ing is proposed. snalytical ‘nd numerical results for a crack-
ed strip and cracked plates are listed.
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INTRODUCT ION

In recent years, interest in problems of the c¢valuation of dy-
namic stress intensity factors for cracks disposed at the half-
plane or half-space boundary or approaching it has increased
enormously (Boriskovsky and Parton, 198%). The reason for such
an interest lies in the fact that in practice the proximity of
the boundary to the fracture source has to be taken into acco=-
unt, especially in dynamic problems when a complicated wave
field is generated due to multiple reflectionse

The authors have investigated at different times & number of
fracture mechanics dynamic problems for harmonic loading of
cracked bodies, which give information about finite cracked
plate vibrations. The problem for a cracked strip was solved
by Parton (1972), Parton and ilorozov (1978) using analytical
metl.ods, and the problems for a rectangular plate with an edge
(Boriskovsky, 1979) and centre cracks were solved with the
help of the numerical finite element metl.ode

#hen solving the problem for the strip —oco<Yy<oo, IXI<L
with a symmetrical (relative to Y ) crack of length 28 with
normal loading qexp(iwt)( q = const), the dual trigonometric
series method was used and the following results were obtained.
The dependence of stress intensity factor K /qVg on the
crack length E/L for different frequencies w* =gwklk/Ca T -
of loading is shown in Fige 1 ( C4 1is the P —wave velocity)e
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Fige 1. The dependence of stress intensity factor
on the crack length for different frequ-
encies in the infinite cracked strip.

Line 1 corresponds to the static case w*= 03 line 2 to W™ =
= 00274 and line 3 to W* = 0.316. These results demonstrate
that over a wide range of frequencies, the inertial effect is
connected with a decrease in fracture load level.

The numerical method for the determination of dynamic stress
intensity factor in cracked plates under harmonic lcading is
based on the representation of these factors in the form of a
superposition of '"conditional' stress intensity factors corres-—
ponding to normalized vibrational modes with some weighting
nultipliers. The wmethod proposed here seems to be more conve-
nient for problems under consideration.

The formulation of basic equations

The finite element equations of motion of elastic body without
damping under harmfnic loadin iven by

[MI{x}"+ [K1{x} =g{ﬁee il &P
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where [M] is the mass mutrix, [K]l +the stiffness Q&trix,{x}
the displacement vector, and {f} the loading vectore
Tor W = O we obtain the static equations

(k1 {x}={f} . 2)

Denoting by Wi the eigenvalues in increasing order and{by
{X(” Tnc eigenvectors from the general cigenvalue problem

[K1{x} = w2 [M]{x}, (%)
(x®@} T m1{x P} = 8 4

we can write the particular solution with the perturbation fre-—
quency in the form

(x(0) =3 (xO) (xV)T{H) (@f-w?) et

dence, the static solution can also be represented in the form
of a superposition of natural vibrational modes:

{x‘s’} =§{x‘”]({x“’}T{f}) wi % (&)

#e now introduce the following definitions: KS - E§e static
stress intensity factor corresponding to?x(s)}, K - the(“
"oonditional" stress intensity factor, corresponding to {X },
and K(t) - the dynamic stress intensity factor.

The dimensionality of K(” is defined by teking Eq. (4) into
account. The stress intensity factor can be d?termlned in
terms of the displacemsnt vector by using a linear functlon-—

al, so that .
k() =3 [({(x9) () (@i2-0?) e K @)
Ks= T L) (8] 21K, (8

Usging the notation

K(”({X(”}T{;{-}) -

Zi=

Ky w? ’
we get from (6), (7)
K(t) = KsZziwiz(wiz-wz)'4eLw*, (10
' zzi:ﬂ. )

The last equalily can be used as a criterion for the determina—
tion of the accuracy of dynamic stress intgns1?y gactor 1f‘the
static stress intensity factor Kg appearing 1n Lq. (10) is
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determined directly from the static fige. (2) and not from (8).
Besides, in the region O £ W< W4 the reguired number of modes
for (105 can be found from equality (11). Thus, the crror in
the determination of the dynamic stress intensity factor is-
estimated by the difference [32;-1|. In other words, for the

error estimation, we compare dynamic stress intensity
factor obtained for W = 0O, and the static stress intensity
factor found from equlibrium esguations.

For the solution of general eigenvalue problem, we used the
simultaneous iteration algorithm.

The singularity of stress field in the vicinity of the crack
was modeled by a special singular finite element in the form
of a polygon with a cut and the displacement ficld in it was
approximated from the solution for the craclized nlane (Willituus,
1957). Both Tor sinsuler and regular elenents bthe distributed
125 mateix was used.

Results

The dynamic stress intensity factors were determined in a sgu-—
are plate with a central obligue crack under harmonic exten—
sion—-compressione. The crack sngle was 45°, and a load of unit
intensity was applied to the horizontal edges. The finite ele-
ment mesh is shown on Fige. 2 (the square side & = 22 m, crack
length 28 = %\/'Z—m, Young's rodulus E = 4N/m2 the density
P = 0¢1 kg/m”?, and the Poisson coefficient V = 0.3. Thirty
modes were determined while solving the eigenvalue problem,
The normalized static stress intensity factors are given by
Kis /qywl = 0.548 and Kgs /g Wl = 0.626. The value of
is written for right urper crack tip (it has the opposi-
te sign at the left tip).

It was obtained that for stress intensity factor Kgp the sum
>Zi = 1.017, while 2 Z{ =1.051 for Kg . Hence, using the
crror estimation method intrcduced above, we can state that Kp
and Kqx are determined withk an error 1.7% and 5.1% respecti=
vely. The plots of amplitudes of Ky (A) and Kg (e) in the
region O ¢<W<W; are shown in Fip. 2. [t can be ‘sc¢en that the
stress intensity factors are monotonicelly increasing functi-
ons from static values (when W = 0), These functions become
unbounded when approaching tlke first natural frequencye.

The evaluations with increasing number of modes involwe large
operational costs. Hence, in order to be sure that =Zi-+=0
when L > 30, we used a coarsermesh and determined 60 modes,
It was found that Z{ = O when i> 30 and the modes after
320 have no influence on the stress intensity factor behaviour.

Je have also considered a square plate with a centrgl horizon-—
tal crack. The ratio of crack length to plate side vas 04364,
The normalized stress intensity factor is egual to KIS/Qw/ﬂ? =
= 1423, In this problem we heve found 16 modes. The first 3
modes correspond to rigid bocy motions with zero frequencies,
while modes 4, 6, 7, 10=12, J14-=16 correspond to zero values

of the scalar product ({xW}T{¥f « 30, for a given load, on-
ly modes 5, 8, 9, 13 contribute to the sum (10), and the corres-—
ponding values 2Zi; are equal to 0.92Q-0.102, 0.212 and =0,014,
The dimensionless frequencies for these modes are 4.985, 9,531,
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Fige 2 factorg on the frequency in the finite
cracked plate.



1190

11.084, 27.394, Hence, within the error 1%, we can write

0,920 0,102 0,242 0,044 iwt
K ()= K:s[ 1GR) TmGR Y -G 4o (o ze (12)
,985 9,331) (44.084) B (21, 394)
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