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ABSTRACT

This paper presents finite element analysis of stress concentration and fra-—
cture in bodies subjected to mechanical and thermal loads. The general for-
mulations include large strains and material non-linearities. The constitu-
tive equations of the material are based upon v- Mises yield criterion. The
study described in this paper investigates the influence of thermal gradient
on fracture in elastic and elastoplastic regime. Results of experimental in-
vestigations are compared with corresponding finite element solutions. The
agreement between the calculations and the experiments is found to be very
good .
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INTRODUCTION

During the last years extensive research on fracture mechanics has greatly
enhanced the understanding of structural failure. Recently, a more string-
ent safety criterion, assuming a pre-existing flaw in critical component,
has been adopted to asses service life of aircraft. Most attention has been
concentrated on the prevention of unstable fracture initiation from a pre-
existing crack rather than the subsequent arrest of a propagating crack .This
emphasizes the significance of fracture mechanics as a tool for analysis.

Linear elastic fracture mechanics (LEFM) is based on the concept of a
stress intensity factor describing the state of stress in the vicinity of
the crack tip. However. the prediction of the critical parameters of a cra-
cked structure at failure when appreciable plastic deformation has occurred
still presents a serious problem both conceptually and analytically. In the-
se situations of elasto-plastic fracture mechanics (EPFM) theory is needed.
The most widely used tehnique use either an analysis based upon a critical
crack opening displacement (COD) |1] or the J-integral |2|. Taking all fac-
tors into account, the J-integral approach seem to have distinct advantages
when compared with the COD approach [3].

This paper considers the effect of thermal gradients on fracture. The ef-
fect of thermal gradients across a crack has been the subject of analytical
studies |4|. Sih |5| has shown that the local nature of thermal stresses at
a crack tip is the same as in the problem with mechanical stresses, of the
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type 1//r, since the presence of heat flow involves no additional singular
characteristic. The J-inteqral approach is used. Numerical solutions are ob-
tained by using the finite element method.

GOVERNED EQUATIONS OF THE ELASTIC PROBLEM UNDER THERMAL LOADING

The general thermal stress problem can be divided into two basic problems :
1.- The determination of the temperature field and
2.- The determination of the displacements and deformations due to this
temperature field.
If the heat application is not to rapid, the equation of heat conduction is
given by
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where &k is the coefficient of thermal conductivity,e = 7-T_, T is the abso-
lute temperature, Tois a reference temperature, @ is the hedt generated by
internal heat sourcés per unit time and unit mass, p is the density, ¢ is
the specific heat and ¢t is time.

Consider the dwo-dimensional and steady state heat conduction problem,
with no heat generation and with no heat flux on boundary. then the functi-
onal m of equation (1) has the form
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The functional T can be expressed by a discrete sum 1 for each finite ele-
ment in the whole field. The value of the temperature distribution in the
interior of an alement can be approximated as

M
6(g,n)= 3 N.(E,n) 0. (3)
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where 8. is the temperature at node point <, N. are isoparametric shape
functiofis. B

The other problem is to solve the equation of motion with the kinematic
and stress-strain relations. Elasticity and thermal properties independent
of the temperature have been assumed. The stress tensor must verify the fo-
1lowing equation
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Writting egj explicitly in terms of 6, we have
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Here F. is body force components, t.is the tension, a is the coefficient
of linear‘thermal expansion, o.. and ¢% . are the components of stress and
strain tensors, E is the Youngtﬁodu1ustA and u are the Lame’s constants,
C..k is the elastic constants of the material, u, is the displacement and
§Ld. %s the Kronecker delta and a comma is used to denote the partial deriva-
t¥Ye with respect to x. or x..

The finite element dechnidue is used for the determination of the displa-
cements and deformation.

PARAMETERS OF FRACTURE MECHANICS UNDER
THERMAL LOADING

0f the characterizing parameters applicable to elasto-plastic fracture mech-
anics, the J-integral formulated by Rice [2] is now widely recognized as the
most useful. The path-independent J-line integral is defined as

J:f(Wdacg—OiJ. auijl B das) (10)

where T is any contour from the lower crack face leading anticlockwise arounc
the crack tip to the upper face, S is arc-lenth along the contour,o .. is the
stress tensor, n. is the unit normal vector,, and x.are the local tdordina-
tes such that xIJis alond the crack. The 1nteéra1 (18) is applicable to 1li-
near of nonlinear elastic bodies in two-dimensional, isothermal deformation
fields. Unfortunately, in the case when there is loading along the crack fa-
ce, the integral (10) becoms path dependent. Some efforts have been made to
modify the expression for J-integral which retains path independence in the-
se cases. Wilson’s |6] and Ainsworth’s [7] integrals are valid for use in
two-dimensional thermal cases. Blackburn’s modified integral [8] is applica-
ble to three-dimensional cases. It is defined as
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The integral (11) may be evaluated by applying Green’s theorem, to give
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where W is the strain energy density, 4 is the area inside any contour away
from the tip region. The two-dimensional thermal J-integral can be expressed
in simple form ?6]
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In LEFM, the stress intensity factor Xy is well established as a fracture
criterion. In small scale yielding (HRR singularity), the onset of rapid fra-
cture will occur if X. exceeds the material property K. ., called fracture

toughness. The stress intensity factor of the 1nteract{8n of mechanical and
thermal loads is given as

Kp = (KI)M + (KI)T (13a)

where (x_), , (x.), are the stress intensity factors due to mechanical and
thermal {oﬁds, {eépective1y. Closely related to Kr and K[pis the energy re-
lease rate N

3 * ; 2 * 14
I = G, = K[/E (14)

* * o
where £ =& for plane stress condition, & =£/(1-v") for plane strain. In lar
ge scale vielding is assumed that crack initiaticn takes place if the COD or
integral exceedes the critical value § Jro . respectively.

, od
The most common way of numerically gg1cu1ating COD and J is to use finite
element methods ..

THERMOPLASTIC RESPONSE

Nonlinear material behaviour is modelled using the flcw theory of plasticity
adopting the von Mises yield criterion and the Prandtl-Reuss flow rule. The
total strain increment at a point of body is given by relation

Je .. el . # deny + e, (15) |
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Here ds@., de 5 de?. are the increments of elastic, plastic and thermal
strains;JrespeE%ive1§% f s the yield condition, a is the coefficient ther-
mal expansion, and T is the temperature. The equation (15)-(18) together

with inital yield condition and a hardening rule., defining the loading sur-
face

¥ g gfj,k) =0 (19)

i3 = Prakl exy (20)

where “éikz is the elastoplastic stiffness given by
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with x=0 for elastic and x=1 for elastoplastic Qna]ysis. The discrete inc-
remental equations governing response of the finite element model are

L = aH (22)
Kijkl du = dP + di

EP _ U EP ) (23)
ke = 1P Dikr B4
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where KEE,/ is the elastoplastic matric stiffness, P is the external loads

vector,bdk’ﬁ is the thermal force vector and B is the strain matr1c gene-
rally composé@ of derivatives of the shape functions. The solution of.the
nonlinear equilibrium equations is obtained with Newton-Raphson type itera-
tion |9, 10]. The analysis procedure described above has been aplied tohsq;
lution problems stress concentration of notch structures 1in thermoplasticity
regime under thermal and mechanical loads.

EXAMPLES

The nomerical examples presented illustrate the applicability the foregoing
theory and procedures. ) .
Thg firsg problem is specimen with circular hole with a rad1a1 crack,w31{
ch was subjected to thermal load in elastic regime. The finite elerment mode
utilized in this investigation with a typical mesh pattern is shown 1n Fig.
1. Due to symmetry, only half of the structure need be congTdered with thek
appropriate boundary constraint along the cragk plane to s1mu1ate_the cgac 2
Two types of elements were used. The 3-node s1ngg]ar element [11]is used a-
round crack tip. The standard 4-node isoparametric element is selected in t-
he regions away from the crack tip. There are two types boundary condition
which were examined: 1) the plate with traction-free boundaries and_2) the
plate were derived by letting the end (at y=b) be free to move Ygrtycaly and
uniformly across width. The stress intensity factor. in therm o , is given
by equation (14). Figure 1 shows the results of stress intensity factors
versus temperature gradient for three diferent a crack length. The stress 1n:
tensity factors are normalized by fracture toughness X ﬁ. In order to obtain
a significant effect on fracture the thermal gradient {Kould be more than
400C/cm. In this case stress intensity factor has increased about 15-20 per-
cent. The elastic properties used_gere; the tensile strength 03:2000 MPa,
F= 1.9 % 10° MPa, o = 10,08 ¢ 107" ¢c™ L, _ ’
The next problem is double-edge notched specimen which was §ub3ected_toFrpe—2
chanical and thermal loads. The finite element mesh patternis shown in Fig.
The standard 8-node isoparametric element is used. Tab1e 1 qgives tﬁe prgper-
ties of specimens. Table 2 gives the stress concentration factor K'”mg;’“’ 4
where o is the maximum stress at the notch tip and o 1s Fhe extern Toa
The str8%% concentration factors of experimental investigations are compared
with coresponding finite element solution, Table 2. The agreement between
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Fig. 1 Stress intensity factors under thermal gradients
——— the plate with traction free boundaries
——— the plate were derived by letting the end (at y=b) be free to
move verticaly and uniformly across with

1ABLE |
i 1 1]
f :IAIIIQI Iﬁxfl[ I TYPE OF NOTCHS a I ' ] [
| [— mm
] LARGE 2.80 .35 22
SMALL 2.80 35 .35
TABLE 2
TYPE OF NOICHS [MPa) |k [exp] |k[FEM)
350 2.50 246
E:17 x105[MPa]| , | 400 229 2.27
8 | _—
¢ 2a v YLELD SIRESS:= | | S0 208 2.06
f——— I — a9 - —
1 750 [MPa] 500 1.94 1.96
°
r=sse*c 350 2.68 2.65
o 400 238 2.37
2 -
% 4«50 214 215
500 1.96 199
ST T

Fig 2 The stress concentration factors in elastoplastic regime under
mechanical and thermal loads
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the calculations and the experiments is very good.

CONCLUSIONS

This paper presents the influence of thermal gradients on fracture in ela-
stic regime and the stress concentration in elastoplastic regime under ther-
mal and mechanical loads.

A rectangular sheet with a radial crack at a circular hole, which was sub-
jected to thermal loads, was analysed. In order to obtain 3 significant effe-
ct on fracture the thermal gradient should be more than 40-C/cm. In this ca-
se, the stress intensity factor has increased about 15-20 percent.

Numerical results are presented in this paper for the stresses near notch
tips in specimens underqoing mechanical and thermal loads in elastoplastic
regime. Numerical results are compared with experimental results. The agree-
ment between the calculations and experiments is found to be very good.

These all numerical results have been obtained using the finite element
method. The results presented here are ilustrative in nature.
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