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ABSTRACT

On the basis of a hybrid stress model special crack tip ele-—
ments have been elaborated according to the approach outlined
by Pian and Moriya. Their efficiency and accuracy in describ-
ing the crack tip singularity are compared with those of other
crack tip elements. Various examples of a three-dimensional
fracture mechanical analysis are given.
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INTRODUCTION

In many practical cases the fracture mechanical assessment of
a structural component with crack requires a three-dimensional
mechanical analysis. At present the finite element method
(FEM) is the mostly used numerical tool for solving such com-
plicated boundary value problems in elastostatics. Since con-
ventional finite element types are not capable of reproducing
the singular stress state at the crack tip, special crack tip
elements or refined techniques have been developed to deter-
mine the stress intensity factors. Especially for three-dimen-
sional crack problems the search for more efficient finite-—
element-algorithms is necessary to reduce the high computa-—
tional expenditure. In the present paper crack tip elements
are proposed on the basis of a hybrid stress model. Their effi-
ciency and accuracy in describing the crack tip singularity
are compared with those of other crack tip elements by various
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examples.

CRACK TIP ELEMENTS

From analytical investigations (Kassir and Sih, 1975) it is
known that for a crack fully embedded in a 3D solid, the

asymptotic stress and displacement fields at each point of the
crack front are as follows:

€,4(r,0,1) = r"1/2[KI(t)f§J(6)+KII(t)f§§(9)+KIIIf:{§I(G)] (1)

u, (r,0,t) = r'/2 E{I(t)gi(e)H{H(t)giI(G)H{IIIg;[_II(G)] (2), o

where (r,8,t) are cylindrical coordinates and t lies parallel
to the crack front.

If one wants to take advantage of equations (1) and (2) for
constructing special crack tip elements the following dilemms
arises: (a) either the compatibility with the neighbouring
standard elements is violated, or (b) the analytical knowledge
can only partly be used if the compatibility is maintained.
This particularly holds for the majority of crack tip elements
developed by means of a displacement model. Among these, so-
called "quarter-point" elements (Barsoum, 1976) are mostly

Fig. 1. Arrangement of hybrid ocrack
tip elements around the crack front

The assumed stress state in the elements consists of regular
polynomial terms together with equation (1) containing tl:;.lebl )
stress intensity factors K1, K11 and Kyyy as unknown varba g
It satisfies the equilibrium equations” and the traction bound-
ary conditions on the crack faces. Besides quadratic isogara-
metric shape functions also special terms are used for tde
boundary displacements taking into account the radial an
angular dependence of the crack tip solution (2). In the com-

applied, since they can be obtained by a simple modification
of isoparametric standard elements. The mid-edge nod$7 are
shifted to the quarter-point position, whereby an r~1/2_gingu-
larity of the strain state is achieved. The angular distribu-

tion of equations (1) and (2), however, cannot be taken into
account.

tional implementation these hybrid elements were combined
5‘1153 iﬁe FEM-grogram elaborated by Altenbach and Wiltinger,
1981. From the resulting solution for the nodal point dis-di
placements the values of the stress intensity factors are -
rectly calculated for each segment of the crack fronte.

Hybrid element formulations enable the above mentioned diffi-
culties to be overcome, since the field variables in the in-
terior of the element and those at its boundary are treated
independently of each other. The continuity of displacements
and tractions at the transition to the neighbouring elements
is guaranteed by the variational principle in an integral

COMPARISON OF CRACK TIP ELEMENTS

he ose of comparison the problem of a cylindrical ba:
sgihtan Immal pennygshaped crack was chosen,loaded by a.x%au
tension. Because of axial symmetry only a wedge-shaped finite
manner. For the construction of crack tip elements the known element network had to be constructed, the faces of whi;l{ W§§'€
crack tip solutions can be completely employed for the element subjected to appropriate displacement constraints (see g%h -
volume, whereas at the boundary such displacement functions For the two hexahedron elements directly at the crack tip e
are assumed which are ldentical with those of the adjacent following element types were used:
standard elements. The "displacement-compatible" crack tip a) isoparametric standard elements;
elements developed in this manner can be incorporated into any b) quarter-point hexahedron elements;
PEM~-program system. A review sbout hybrid crack tip elements c) hybrid elements of A and B type (see Fig. 1)
was given by Atluri and Tong, 1977. From the resulting opening displacements of the nodeslonttgeb
On the basis of a hybrid stress model special crack tip ele- crack face a local stress %‘gtengiggefggtgﬁdgzagfe§a "01131 :he 3
ments have been elaborated according to the approach outlined means of equation (2). 1111;1 %’ shown anﬁ compared with the
by Pian and Moriya, 1978. A detailed description was given by distance from the crack p is . b Kasoie. 1975.
Kuna, 1982 and 1983. solution of KT = 0.6396 € {7¢ 6" given by ’

The shape of the crack tip elements is a 20-node hexahedron. The results point out thati:ta?gigd g%eﬁ‘eﬁzzaf‘aﬁeiﬁrgﬁ"ﬂg;,
Four hybrid elements are arranged around each segment of the ing the orack tip singullar 3tr arepmuch ‘:t[)etter suited, The
crack front line (see Fig. 1). The remaining part of the body whereas quarter=point elements oo ot valts) sbwme
is modelled by standard elements. best behaviour (nearly straight line to the e
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Fig. 2. FEM-mesh for a FPig. 3. Comparison of
cylindrical bar with internal results for penny-shaped
enny-shaped crack crack using isoparametric
?20 elements, 177 nodes, elements (v), quarterpoint
%= 2,39, ¢/d = 0.2) elements (¢¥) or hybrid

elements (O)

from the hybrid elements. The commonly used extrapolation of
K1* towards r = 0 leads to Kr-values (full symbols in Fig. 3)
with errors of =5.5 %, -3 % and -0.5 % for the element types
(a), (b) and (c), respectively.

Another testing example was the compact tension fracture test
specimen (see e.ge. Tada, 1973). Crack length a was half the
specimen width W, thickness B=W/2. Due to double symmetry only
one quarter of the geometry was considered using different
networks and crack tip elements. The coarsest mesh consisting
of 4x2x5 elements is drawn in Fig. 4. The finest mesh had
6x4x5=120 elements and 733 nodes. Around the crack front ten
hybrid elements or quarter-point elements were located. The
calculated distributions of the stress intensity factor across
the thickness of the specimen are summarized in Pig. 5. For
comparison the 2D -solution (Tada, 1973; =-=-=) and one of the
most accurate 3D solutions (Yamamoto and Sumi, 1978; ——) are
included in the figure. The Kr=-values obtained by means of

the hybrid elements (A fine mesh, O coarse mesh) are in good
agreement with the results of Yamamoto and Sumi, 1978. The
application of quarter-point elements (A fine mesh, @ coarse
mesh) resulted in a loss of accuracy by 5 % and 30 %, respec-
tively. In this case Ky was determined by displacement extra-
polation. If applied to the hybrid solution of the fine mesh,
this method gave the results indicated by v symbols.
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Fig. 4. Finite element mesh Pig. 5. Normalized stress
for one quarter of the compact intensity factor K1 across
tension specimen the thickness of the CT-
(40 elements, 297 nodes) specimen

AFR VOL 2-K

Rm =135 mm
R, = 20mm
Rq = 56 mm
a - 15b

Schnitt AA

Fig. 6. 90-degree bow with inner semi-ellip-
tical surface crack;

lower right:

cross section along

the bending line;

bending radius = 135 mm
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1193 Knoten
208 Elemente

Fig. 7. FEM-mesh for the bow with inner semi-elliptical sur-
face crack (one quarter, 208 elements, 1193 nodes)

APPLICATIONS

Finally, a more complicated technical crack geometry was in-
vestigated. At first, a thick-walled cylindrical tube under
internal pressure of p=1 MPa was analysed, containing a semi-
elliptical inner surface crack of an axial ratio of a/b = 1.5.
The outer and inner radii amounted to R} = 20 mm and Rg =

56 mm, respectively. Crack depth was half the wall thickness.
Second, a 90-degree bow of such a tube was considered, see
Fig. 6. In Fig. 7 the network for one quarter of the geometry
is depicted. The crack front was surrounded by 16 hybrid
elements. The calculated distribution of K1 along_the crack
front is shown in Fig. 8 for all cases analysed. In the case
of the bow only negligible values of Kyy and KIII occurred.
The pressure acting on the crack faces was taken into account.
Without it (see solution —---) the stress intensity decreased
by about one half. Apart from the region close to the inner
gurface, the correspondence of our result for the straight
tube with the estimating formula derived by Williams, 1980,

is good. The Ky-distribution for the bow does not signifi-
cantly differ from the straight tube solution, i.e. the
curvature of the bow has no great influence.
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Fig. 8. Ky=-distributions along the crack front

for a semi=-elliptical surface crack in a pres-
surized tube or bow

CONCLUSIONS

In contrast to other 3D crack tip elements, the proposed
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hybrid elements have the advantage that their shape functions
contain the complete singular crack tip solution and fulfil

the interelement compatibility requirements. Purthermore,
stress intensity factors K1, Ky and K1II are obtained di-

the

Trectly and separately. Compared with quarter-point elements,
the hgbrid elements reproduce much better the crack tip singu-

larity and give a higher accuracy of the gtress intensity
factor solution. For instance with the rather coarse mesh
Fig. 4 a sufficiently exact Ky=-solution could be achieved
the CT-specimen. The most promising technique for 3D crac

of
for
s

analysis would be a combination of hybrid elements with the

virtual orack extension method, as 1t is usually done for

quarter-point elements. The extension to crack problems under
mixed mode loading conditions, thermal strains and body forces
does not imply difficulties. Problems arige - as for all 3D
crack analysis today - if the crack front intersects a_sur-—
face of the body, because the fundamental erack tip solution
of equations (1, 2) becomes invalid at this point. The use of

the embedded crack tip solution outside a small boundary
layer is generally supposed to be Justified.
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