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ABSTRACT

The problem of a crack near an inclusion is treated using the restriction in-
tegral equation method. An approximation for elastic fields and the energy
of interaction is obtained. Energy release rates relations are established.
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INTRODUCT ION

The interaction of cracks with elastic inclusions is of importance in me-
chanics and micromechanics of fracture, the theory of dislocations, geome-
chanics, etc. Composite materials, such as ceramics and fiber reinforced
composites, are heterogeneous solids consisting of homogeneous phases. The
stress field around the crack tip at a bimaterial interface is drastically
different than that for a homogeneous medium. A number of analyses attempt-
ed to predict the stress fields and stress intensity factors (Atkinson, 1972;
Erdogan, 1975). Microscopic observations clearly indicate that in many cases
cracks are quite different from an ideal cut. Typically, a zone of ''damage"
develops in the vicinity of the crack tip and accompanies the crack propaga-
tion. This zone can be identified and is visible as an entity adjacent to

the crack. Interaction between such damage and the main crack strongly ef-
fects the stress-strain field and related phenomena. Modeling of this in-
teraction is presented in the concept of the ''crack-layer" (Chudnovsky, 1984).
The attention in this case should be concentrated on energy release considera-
tion of the crack-inclusion system as a whole.

In this paper, the problem of a crack with an inclusion is treated using the
restriction integral equations method (Kunin, 1983), which permits one to
obtain approximate analytical or efficient numerical solutions for the in-
clusion problem. An approximation for the elastic fields and the energy of
interaction between the crack and the small inclusion near the tip of the
crack is obtained. Energy release rates are considered in detail and new
relations for a crack-inclusion interaction are established.
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GENERAL MATHEMATICAL MODEL

The equation for the displacement u(x) in an unbounded elastic space with an
elastic moduli tensor C(x) is

AouB _

-3,C ) 2 ug ) = a% ), (1)
where q(x) is body force. The equation is to be understood in the sense of
the generalized functions. In compzct form we write

Lu=q , L=-3C3 . (2)

The solution of this equation which tends to zero at infinity is expressed
through a Green's tensor for the displacement

u (x) = [G,g0x,x")ag(x")dx! (3)
or, in compact form

u=6Gq , GL=1 , (4)
where I is the identity operator.
We resolve the operator L into two components

L=1L, +L , Ly o= -3C;(x)d8 (5)
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where L, describes a medium with a crack and C (x) is a perturbation in the
elastic moduli due to an inclusion. The case C; » = corresponds to a rigid
inclusion, and C1 = -C, corresponds to a void. Let G, be a Green's operator
corresponding to L,. The Green's function G, (x,x') is known for certain two-
dimensional crack problems.

Applying G, to (2) we obtain the integral equation
u + GLju=u, , (6)
where u, is the displacement field in the medium with a crack in the absence

of the inclusion. Applying the symmetrized gradient operator def to (6) we
obtain the integral equation for the strain € = def u

e+ K.Cie = ep (7N
where e, = def u, and
K, = -def G, def (8)

is a Green's operator for the strain in the medium with the crack. Its kernel
K,(x,x') is a generalized function defined by the corresponding regulariza-
tion. Properties of Green's operator K = -def G def are discussed in detail
in (Kunin, 1983).

Consider the case when the inclusien is localized in a finite domain V+ with
the characteristic function V*(x) (which is a_support of the function

C,(x)). Let V™ be the complimegt to V' and V (x) be the correspond}ng charac-
teéristic function. Note that V (x]C,(x) = Cl(x), \' (x)Cl(x) =0, V (x)+V (x)
= I. Denoting the multiplication vi%h the functions V*(x), V7 (x) by the

SR—-———
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operator V+, V™, we have v¥ + VT = I. Let us introduce the operators
K= vkt o, KD o= vk )
and let a: = V+E*, and so on, be the corresponding restrictions. Then the
equation (7) is equivalent to the pair of equations
A R (10)
e =€) - KC et . (11)

Tbe first equation determines the solution e’ inside V' and the second deter-
mines its continuation on V .

Thus, fgr the inclusion localized in the domain v', the problem is reduced
to the 1nteg?al equation (10) inside V . The essence of the restriction in-
tegral equations method is based on a correct definition of the singular

+ .
operators K,, K,, in the sense of the generalized functions (Kunin, 1983).

The solutiop of the problem is equivalent to representing the Green's function
G for a medium with both crack and inclusion in the form

G = G, - G,3P,3G, , (12)

wheFe the operator P, satisfies an integral equation in the domain v* and
admits a representation

-1 -1
P, = -(C]” + KD . (13)

The solution of (10) is now given by

+ + + +
e =g, + KPP, e, 3 (14)

The operator P, can pe interpreted, as the interaction energy operator. In-
deed, the energy of interaction, ©¢. p between the inclusion and field €_ is
expressed as n

%

1
o . = -76£'e1(x)P*(x,x')ej(x-)dxdx' , (15)

where P (x,x') is the kernel of the operator P,.
The total energy of deformation ¢ is equal to the sum

= ¢ + o (16)
*

where ¢ is the energy of the field e, itself, i.e. in the medium with the

crack in the absence of the inclusion. The total energy can also be written

in the form

, (17)

wherg ¢° is the energy of the external field e_ (without the crack and in-
clusion), and &. is the total energy of interaction of the field e_ with
the crack-inclusion system. The interaction between the crack and the in-

clusion also contributes to ¢int' Analogously to (15) we have
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e = %?ié'e;(x) P(x,x')s;(x')dxdx' , (18)

where P is the corresponding interaction energy operator. To obtain an ex-
pression for P, let us first represent the Green's operator G, in a form
that is analogous to (12)

G, = G, - GdP 3G (19)
where G_ is a Green's operator for a homogeneous medium with elastic constants
C_and is the operator considered to be given. This operator determines
the energy of interaction of the crack and the external field €o° Employing
(19) we have (cf. (14))

+ +

+ +
Ex = €4 ¥ Kopoeo . (20)

Substituting this into (10), we finally obtain
P =P I +PK)P, (I +KP 21
=Yg * (T + o 0) x (I o o) . (21}

Thus, the total interaction energy ¢, is expressed as a sum of two terms.
The first term is the usual interaction energy of the external field e_ and
the crack that is analyzed in fracture mechanics. The second term reflects
an additional contribution due to the inclusion. As was indicated above, the
computation of this term is equivalent to solving the integral equation (10)
in the domain of the inclusion. The problem is essentially simplified when
the domain can be considered as a small one.

INCLUSION IN THE ASYMPTOTIC CRACK TIP FIELD

Let a be a characteristic size of the inclusion and r be the distance from
the center of the inclusion to the crack tip. The essential simplification
of (21) is achieved when the inclusion is located in a vicinity of the crack
tip, i.e. a << & and r << ¢ where 2L is the crack length. Then the asymptot-
ic stress field o, near the crack tip is given by
o, = k(an)_l/Z

* (22)
where k is a tensor stress intensity factor. In the absence of the inclusion
and for g, = const

/2

. 1
k = k oo(nk) = (23)

o

Assume first that a single inclusion is localized in a small domain in a
neighborhood of the point x_. Then the operator C (x) for the elastic moduli
of the inclusion can be approximated appropriately by a é-functional model

Ll(x) = led(x - xo) 5 (24)
where v is the volume of the domain, and C, is an effective elastic constant.
Note that a quasicontinuum with a characteristic parameter of the order of
the inclusion size should be incorporated to make the §-functional model
mathematically correct (Kunin, 1983). The §-functional model (24) reduces
(21) to

P =Pt (L +Pg) P, (I + gOPO) s (25)
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where
P, = v(C-l +vg )t 26
« = -v(C] g.) (26)
and 8,> 8. are known constants, v is the volume of the inclusion.

Distinct from (21), the operator P is defined explicitly if the Green's

tensor G, and thus the operator P, are known. The strain field € and the in-

teraction energy ¢. may be obtained using (14) and (18). The kernel of the
. int. . B s -

operator P0 is approximated by the first term of its suitable multipole ex-

pansion in a neighborhood of the Xg- The validity of such an approximation

is considered in detail in (Kunin, 1983).

In the particular case of an elliptical crack in an anisotropic elastic
space, the first approximation to P_ gives rise to an exact expression for

the energy of interaction ¢;nt of tﬁe crack and an external field 00:=const

1 - Vo 2
o =
®ine = 2u° k%

, (27)

where u _, v, are shear elastic module and Poisson's ratio of a medium, res-
Eective?y. Let p,, vV, be elastic constants of the inclusion and u =u1/uo,
v =V /vo. Then using (22), (23), (25) and putting g, = g, in (26) we
obtain from (18)
°

¢int = ¢int

[1 + n&zwol 5 (28)
where n = r/%, £ = a/r and
H(by + b,H)

Yo T T EmAFb,m

(29)

where b. = bi(vo,v ) are constants of the order of unity which are calculat-
ed explicitly for a given model.

Returning to the case of an arbitrary inclusion when £ is not assumed to be
small we obtain an expression for Qint which is a generalization of (28)

o = o5 11+ nefy ()], (30)

where y(&) = Y(&,u,v) depends on the shape of the inclusion and y(o) = wo
given by (29).

There are certain cases when y(£) can be computed explicitly using results
obtained for a crack interacting with another single crack (Isida, 1970;
Savin, 1970), with several cracks (Chudnovsky, 1984), and with an elastic
cylindrical inclusion (Atkinson, 1972; Erdogan, 1975).

For the model under consideration, ¢. = ¢. (&, r, a). Respectively, three
cases of the crack-inclusion motion cgﬁ be éggtinguished: 1) the crack length
22 is varying while r,a = const (translation of the system as a whole); 2)
the distance r is varying while 2,a = const (relative translation of the in-
clusion); 3) the inclusion size a is varying, while 2,r = const (inclusion

is swelling). Let us calculate the corresponding energy release rates for
all three cases.

As is well known, the energy release rate for a single crack propagating in
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a uniform stress field o_ = const is described by the J-integral. In nota-
tion corresponding to theé treated model
t1-
_ 1 int _ -1_..
.55 53 =& & (31)

Analogously we define for the first case

1 aQint
Jz_Z-T— > (32)
for the second case
o e 33
T oor ? (33)
and for the third case
o .
* int
M o=a —— 4

* *
It can be proved that J, J and M are path-independent integrals correspond-
ing to conservation laws with respect to the translation and dilatation de-
fined above.

Using (30) we find

S L PR TS (35)

M R TOR RS NI (36)
* & 2 3

M= ger[2elyce) + ESp ()] . (37)

Expressions (30) and (35)-(37) permit one to establish certain important re-
lations between the interaction energy and all path-independent integrals.
They are:

* * *
St = M -1J 5 (38)
= o Yoo Lo 3=J% % oM - 23"
J= 2 @O * T%ned =9+ M A (39)
One may try to interpret (38) as
* *
M=M -1J |, (40)

where M should stand for a new dilatation energy release rate corresponding
to a new coordinate system origin. However, M would not satisfy the relation
corresponding to (34), i.e., M is not a true dilatation energy release rate
but rather a combination of dilatational modes.

It is clearly seen from (39) that J is a superposition of energy release
rates due to the absolute and relative translations and the dilatation.

Note that the contribution of the last two terms to J depends on the shape,
location and rigidity of the inclusion. As a rule, for soft (rigid) inclu-
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sions the contribution will be positive (negative). Under some conditions
an essential screening effect 1is possible %Chudnovsky, 1984).

In conclusion note that the results obtained can be extended to more general
models. Localized defects can be not only inhomogeneities, but in addition
can also include a source of internal (residual) stress. To extend the
presented approach to this general case an appropriate renormalization of the
effective characteristics of the inclusion is necessary.

An extension of the proposed approach to a system of defects is also
possible. In this case a solution is not a superposition of perturbations
caused by individual defects because of interactions between defects. The
tensor describing corresponding interactions can be calculated explicitly
for §-functional models.

In the general case, the kernel of the operator P might be found by numerical
methods. Use of the latter is facilitated by the fact that, unlike Green's
functions, the operator P is localized in defect domains. Numerical methods
are applied directly to integral equations similar to equation (10).
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