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ABSTRACT

A theory is presented to model the propagation of a crack preceded by evolv-
ing damage. The crack and the surrounding damage are treated as a single
thermodynamic entity, i.e., a Crack Layer (CL). The active zone of the CL may
propagate by translational, rotational, expansional and/or distortional move-
ments. Concepts of irreversible thermodynamics are employed to derive the law
of translational CL propagation as:
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where % is the CL length, B is a dissipative coefficient expressing the frac-
tion of the total irreversible work Wyis expended on CL translation, Jl is the

energy release rate, y* is the specific enthalpy of damage and R; is the

translational resistance moment. This expression describes the entire history
of CL propagation. All parameters involved can be experimentally measured ex-
cept B] which is presently taken as a phenomenological coefficient.

KEYWORDS

Damage, Entropy production, Crack Layer, Specific enthalpy of damage, Energy
release rate, Translational resistance moment, Crack propagation.

INTRODUCTION

Fracture of solids, polymers are no exception, occurs as a sequence of molecu-
lar processes leading to microscopic (local) damage. Accumulation of local
damage gives rise to a macroscopic crack which propagates: first in a slow
fashion, then critically (avalanche-like) causing ultimate failure. Efforts
addressing long term strength of materials generally extend into three main
directions: (1) phenomenological theories of local long term strength, (2)
studies of crack propagation, and (3) statistical approach to failure. A
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theory unifying these three facets is being advanced at present by Chudnovsky
and co-workers. The theory recognizes a representative volume of the material
as the basis for property determination at a point within the continuum. The
size of the representative volume which must be large in comparison with the
elementary substructure is determined from conditions of statistical homo-—
geneity. In this respect, the thecry identifies fracture events within three
interrelated scales. Considering polymers as an illustrative example, the
accumulation of intra and interchain motion, and chain scission may be con-
ceived as submicroscopic events. The accumulation of submicroscopic events
to a critical level leads to microscopic damage. Macroscopic cracks appear
as a result of the accumulation of microscopic damage to a critical level.
The crack(s) propagates first in a quasistatic fashion until a stage is
reached where catastrophic failure is experienced due to instability.

Present experimental techniques provide useful qualitative information docu-
menting the evolution of submicroscopic events giving rise to microscopic

damage. It is within the microscale (lO_b—lO_Am) where damage evolution can
be characterized quantitatively with a reasonable degree of accuracy. Ac-
cordingly, information can be obtained to test ideas modeling crack initia-
tion and propagation. Having this in mind, we proceed to describe the crack
layer model for crack propagation.

THE CRACK LAYER CONCEPT

Microscopic damage accumulation to a critical level is always a precursor of
crack initiation, even in the presence of a notch (Kitagawa, 1983). Once in-
itiated, the crack grows surrounded and preceded by a damage zone. The latter
consists of structural transformations such as crazes, shear bands, voids,
crystallinity changes, etc. Although the space within which such transforma-
tions disseminate can be very small compared with crack length, the energy
expended on it could be orders of magnitude higher than that expended on the
creation of crack '"surfaces'" (Bakar, Moet and Chudnovsky, 1983; Haddaoui,
Chudnovsky and Moet, 1983). For example, Fig. 1 exhibits layers of extensive
damage accompanying fatigue crack propagation in stainless steel (Chudnovsky
and Bessendorf, 1983) and polypropylene (Chudnovsky and co-workers, 1983). A
similar CL is also displayed by polystyrene as shown in a companion paper
(Botsis, Chudnovsky and Moet, 1984a). Although these materials are structur-
ally different, the macroscopic evolution of damage appears strikingly simi-
lar. Similar features of fracture propagation have been observed recently in
materials as well (Hoagland, Han and Rosenfield, 1974; D. Clark, 1983). A
rational model of fracture propagation has to account for the fracture phe-
nomenon as observed.

Two complimentary procedures should be followed. One is to model the stress-—
strain field due to the interaction of the main crack and multiple microcracks
(crazes). The second is a thermodynamic approach which describes the system
in terms of integral damage characteristics. Recent reports (Chudnovsky and
Kachanov, 1983; Dolgapolsky, 1983) describe early results of elastic crack-
damage interaction. The general thermodynamic framework of the crack layer
theory is presented by Chudnovsky (1983). 1In the present paper, the discus-
sion is limited to a thermodynamic treatment of crack layer propagation by
translational mode.

DAMAGE DENSITY

In our model, damage is defined as discontinuities such as microcracks,
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Fig. 1 Optical micrographs of SEN specimens of stainless
steel (A) and polypropylene (B) under fatigue

loading. The propagating crack is preceded and
surrounded with damage.

crazes, shear bands, etc. Such discontinuities can be visualized as two di-
mensional defects and thus be characterized by their middle surfaces. Spe—
cifically, we use the total area of middle surfaces of discontinuities within

a unit volume as damage density '"p" with the dimension mz/mB. For example,
the craze density in the vicinity of the main crack has been directly evalu-
ated from optical micrographs of thinned polypropylene samples (Chudnovsky

and co-workers, 1983). A more complete description of damage requires an
additional parameter characterizing orientation. In this paper, since we con-
sider rectilinear crack propagation where no change in damage orientation oc—
curs, p suffices for damage characterization.

DEFINITION OF THE CRACK LAYEP

A system consisting of a crack and surrounding damage is considered as a mac-—
roscopic entity; that is a Crack Layer (CL) (Fig. 2). This is a layer of a
transformed (damaged) material which propagates into the initial material.

The front zone of the CL within which damage accumulation is non zero (p > O;
p > 0) is defined as the active zone. At temperatures well below Tg, the rate
of damage change (further growth or healing) under unloading conditions is
assumed negligible. Thus, a wake zone (p > 0; 5 = 0) appears as a trace of
the active zone propagation. The active zone is confined by a leading edge

2 Pq s
(F( )) and a trailing edge (F(t)) (Fig. 2). ‘llotion of the active zone, in
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Fig. 2. A schematic illustration of a crack layer in an
infinite plane.

general sense, can be resolved into the following elementary movements:
translation, rotation, isotropic expansion, and distortion (shape changes).
Usually, the size of the active zone is small with respect to the crack
length, therefore affine deformation of the active zone can reasonably approx-
imate the actual evolution of damage. Accordingly, the rates of translation

Q, rotation w, isotropic expansion e, and distortion d are considered as

thermodynamic fluxes. The law of CL propagation is thus established by re-
lating these fluxes to the reciprocal forces (causes) within the framework of
irreversible thermodynamics.

THERMODYNAMIC RELATIONS

We consider fracture propagation as a thermodynamically irreversible process.
For such a process, the principle of extremal entropy production usually sub-
stitutes the variational principle of classical thermodynamics. The total
entropy change of a solid containing a CL is given by

§0T < B, # 8, 1)

where éi is the entropy production due to CL propagation and other dissipative

processes, and ée is the rate of entropy change due to exchange with the sur-

rounding medium. Our goal is to define the entropy production due to CL pro-
pagation in order to identify thermodynamic forces (causes) reciprocal to the
rates of translation, rotation, expansion and distortion of the active zone.
For this purpose the following assumptions are adopted.

(i) Small deformation is considered. The total strain tensor €, can thus be

decomposed into perfectly elastic (thermodynamically reversible) deformation,

ROH @

resulting from the creation of discontinuities like

deformation €
+
€( ),

microcracks or crazes; and irreversible deformation, such as viscous
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flow, i.e.,

E - E(e) & E(d) e S(i) (2)

Accordingly, the total work (W = fo : € dv; where 0o is the stress tensor, and
v~ b e
v is the volume) can be decomposed into three corresponding components, i.e.,
W=W, +Wg + W (3)

(ii) A part "D" of the work wi, done on irreversible deformation is dissi-—
pated on damage formation. The rest of W; is converted into heat Q. Thus,

the rate of energy dissipated on damage formation and growth D is defined as

D=w; -Q (4)

Since p = 0 Everywhere outside of the active zone, D is localized only within
the active zone. Outside of the active zone, the work done on irreversible
deformation is totally converted into heat.

(iii) The Helmholtz free energy, F, of the solid is presented as the sum

F = F, + F, 5)

where Fo is the free energy of the unstressed state and F, is the elastic
strain energy. The first term F  becomes significant when discontinuities
(cracks, crazes, etc.) are introduced. Equation (5) implies that no Helmholtz
free energy is associated with irreversible deformation.

(iv) Gibbs potential, G, is introduced as

G =P, +P, (6)

where the elastic potential energy P, is conventionally described as the dif-
ference between the elastic strain energy F, and the work done on elastic de-

formation (We), i.e.,

Pe = Fo - We (7
Similarly, the potential energy of the initial (unstressed state "P," is in-
troduced as

Py = Fo - Wy (8)

The latter reflects the potential energy change due to damage.

(v) Crack propagation is analyzed under isothermal conditions with zero gra-
dient of temperature. It follows that all heat generated within the system
is radiated in equilibrial fashion.

Based on the above statements, the entropy production due to CL propagation
has been derived as (Chudnovsky, 1983)

Téi=1')+i-xtr+u':-xr°t+e'~xe"p+é-xde" (9
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rot exp

where Xtr, X s X and Xdev are generalized forces reciprocal to the cor-

responding fluxes i, Q, e, d. Each of these forces is given by the negative

first partial derivative of Gibbs potential, G, with respect to the corre-
sponding generalized coordinate. Thus, for example, the driving force for CL

P tr 2 .
translation, X, is given by

¥ - - 2 (10)

=

According to the presentation of Gibbs potential given in (6), the transla-
tional force consists of two components. The first is the active part
oP
Jy = - = (11)
1 3L

which is the conventional energy release rate. The second is the resistant
part (Chudnovsky, 1983)

oP

o
Y*Ry = = =5 12)

where Y* is the specific enthalpy of damage and Ry is the CL translational re-

sistance moment. Thus, the thermodynamic force results from the competition
between the active and the resistant tendencies. Below, we present a brief
description of Y* and R;.

THE SPECIFIC ENTHALPY OF DAMAGE

Damage events commonly encountered in polymers, such as crazes and shear
bands, are considered as discontinuities and characterized by their middle
surfaces. The difference between the enthalpy densities of damaged and ini-
tial matter multiplied by the thickness of an element of damage (microcrack,
craze or shear band) represents the specific enthalpy of damage with dimen-

sions of J/mz. Refering to Figs. 1 and 2, CL propagation is accompanied by
damage nucleation and growth. This constitutes an energy sink which is the
source of resistance to propagation. Thus, the translational resistance mo-
ment R1 accounts for the total amount of damage increment associated with CL

advance, and is given by the following integral over the trailing edge F(t)
Ry = Jo np dT (13)
r(e)
where np is the projection of the unit normal vector on the tangent to the

crack trajectory at the crack tip. Obviously, the resistance moment is a
vector quantity whose magnitude is a pure number. Thus, Y*R; has the dimen-

sion of J/mz. It is worth noting that the energy release rate J; is also a

vector quantity with direction along the tangent of the crack trajectory (for
smooth trajectories). Since J] and Y*Ry] have the same direction which is

uniquely defined for a given crack path, it is convenient to use the same
symbols for the magnitude of these vectors. That is, J; and Y*R; are used to

express |J1| and IY*Rll, respectively.
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CL TRANSLATIONAL DRIVING FORCE
From (10), using (6), (11) and (12), translational force is expressed as
tr
X7 = Jq - Y*Ry (14)

The first term, the energy release rate, expresses the amount of energy avail-
able for CL translation. The second, on the other hand, is the amount of en-
ergy required for nucleation and growth of the damage surrounding the crack

and the crack itself. Thus, the magnitude of the thermodynamic force repre-
sents the energetic barrier for CL advance. Other thermodynamic forces, i.e.,
rot ex dev :

X , X p, and X possess similar structure.

LAW OF TRANSLATIONAL CL PROPAGATION

For the case considered, i.e., CL propagation by translational mode alone,
equation (9) reduces to:

1§y = b + £.x°° (15)
Upon substitution of equation (14) into (15), we obtain:
T$; = D + £(J; - Y*R)) (16)

According to the second law of thermodynamics, the entropy production is non
negative and equals zero for reversible processes, i.e.,

T$; > 0 a7

Analysis of stability shows that J; - Y*R; is nonpositive for slow crack pro-
pagation (Chudnovsky, 1983). Hence, CL propagation is prohibited by the sec-
ond law (17) UNLESS the first term (D) of equation (16) provides enough dissi-

pation to compensate for the negative term i(Jl - Y*Rl).

Usually, the constitutive equations relating thermodynamic fluxes and forces
are obtained from various formulations of the second law as a variational
principle. Applying the principle of minimal entropy production, which yields

éi = 0 for this case, we obtain the law of CL propagation from equation (16)

as
: D
- — 1
b= R - 3] (18)

The denominator represents the energetic barrier for CL propagation.

The rate of energy dissipated on damage formation and growth (ﬁ) can be as-
sumed proportional to the total dissipated work (Wj). The coefficient of

proportionality apparently depends on the mechanism of dissipation. One
would expect this coefficient to be dependent on strain rate, temperature and
the characteristic time of the fracture process. On the basis of recent de-

velopments in CL stress analysis (Botsis, Chudnovsky and Moet, 1984b) Wy is
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e e tlve zone, us D can be expressed by
HoWy (19)

. -1
e t. ia the phenomenalogical coefficient with the dimension of sec . 1In
i, 9 an be directly evaluated according to equation (4) as the dif-
Fene e 0, it Whercas the total dissipative work Wy is readily measurable

L. the Loasteresin loop, the heat radiated by the active zone Q can be mea-
wged watng, tor instance, infrared microscopy.

Ghai itet tag (19 tnto (18), the law of CL translation (propagation) is given
“ My (20)
Mlt ll
e qualitative behavior of equation (20) is expressed in Fig. 3. One can
Alat fnguial thiee stages of slow CL propagation. In stage 1, the CL transla-
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Fig. 3. Qualitative crack propagation behavior according
to equation (20).
the material damaged during the initiation period. For this reason the ini-
tial slope of I3 vs. Jyp curve is relatively high. Stage II, an intermediate

stage, is characterized by damage growth accompanying crack propagation. This
is reflected as an increase in Ry yielding a decreasing slope. In these two

stages CL propagation is controlled by the dissipative mechanisms reflected

in D (numerator in 20). Finally, when Jj approaches Y*R], the crack can un-
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dergo a transition from slow-to-uncontrolled (avalanche-like) mode of propa-
gation (stage III). This transition occurs for unstable configurations
(Sehanobish and co-workers, 1984).
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