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ABSTRACT

In this report, the theoretical and numerical fundamentals of boundary inte-
gral equations method techniques in real transformed dynamic are presented.
Numerical results for impact problems with crack obtained by B.I.E. Method,
through a dynamic program of general application, are shown. Interesting re-
marks on how the numerical integrations have been done, are pointed out in
the method.
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INTRODUCTION

The solution of problems in classical elastodynamics remains, for the most
part, an extremely complicated and difficult task.

The basis for integral representations of the solution of general linear
elasticity problems is Betti's work of 1872. One of the first attempts to ob

tain the solution of problems in elastokinetics was made by Cerruti |4] in
1879. Later Kirchhoff |14] obtained the solution of the scalar wave equa-
tions as a potential, which had been obtained before by Poisson [19]. In

1897, Teodone |23| obtained integral representations for the displacement
vector in terms of the initial data and boundary displacement and traction.
More recent work by Kupradze 115i outlines a method of solving the steady-
state elastodynamic problem.

The solution of the transient problem in linear elastodynamics by integral
equations is possible due to the existence of fundamental solutions of the
Laplace and Fourier transformed equations of motion corresponding to dynamic
concentrated forces in the infinite medium. These fundamental solutions
appear in Sternberg and Eubanks |22| and Doyle |9|. These solutions, in con-
junction with a reciprocal relation, yield a vector identity which corre-
sponds to Somigliana's identity in elastostatics and Green's third identity
in potential theory.

Taking the field point to lie on the physical boundary of the problem, con-
straint equations derived from transformed displacement and traction vectors
are obtained. For a well-posed problem, the constraint equations become sets
of simultaneous integral equations with the unknown transformed boundary
data as explicit unknowns. These equations are functions of the Laplace
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transform parameter. These parametric constraint equations have their equiv-
alent in elastostatics, see Rizzo |20 . The solution of these parametric in-
tegral equations, for each parametric value, could be a~hieved numerically
by discretizing the boundary and employing quadrature.

The field equations are derived on the basis of displacement theory for a
linear, isotropic, homogeneous, elastic material. Boundary is defined in the
sense given by Kellogg |13[.

THE BOUNDARY INTEGRAL EQUATION METHOD IN TWO-DIMENSIONAL
ELASTODYNAMIC CASE

Boundary integral equation

The Boundary equation, for the surface I' of a system 2 will remain defined
for the zero body force case as:

¢ u(x) + j-r T(x,y) u(y) dl(y) = L. 0 (x,y) €(y) dT'(y) (1)
x,y € T

which connects the transformed displacement and stress fields in the surface
of system @ U I'.

The expressions for the transformed displacement and stress field for inte-
gral points can be obtained using equations

T(x) = -Ir T(x,y) u(y) al(y) + L. O(x,y) E(y) al(y) (2)

o(x) = “Ir S(x,y) u(y) al(y) + Ir B(x,y) E(y) al(y) (3)

x €N ; yerTl

Discretization of the equations

The substitution of the boundary, T', of the system, by another discretized
formed by "E' boundary elements with n (=3) nodes in each of them, causes
equation (1) to transform itself into the discretized equation:

E E
T UG+ y A, G, =) 8, E, ()
e=1 e=1

where H_ and 5; are shape matrices:
€ B B, N O N O N O
ﬁe-I [ o ][ }dre (5)
elB B O N O N O N
r le B2 1 2
4 B =T,0

Establishing equation (4) for all the points, x, where the boundary is dis-
cretized, an algebraic system is obtained as follows:

cu+Bu=0F or Hu=3GF (6)
Similarly equations (2) and (3) are discretized as:
E E E E
T(x) = -y By T +) 8, B0 -=-) 5, T, +) B €, (D
e=1 e=1 e=1 e=1

Calculation of integrations

The coefficients of equations (4) are defined in (5), and equations (7) can
be expressed as:
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ﬁe-Ire T(¢HIN(C) AT §e-Jre S(COIN(E) arg
g, = Jre T(CIN(C) al De = Ire DCOONCL) aly
(=1 o
or in compact form by: I = j £(¢) 4¢ f=(T,U0,5,D).N.Jacobian
= (8)

The coefficient (8) represents the value provided by the integration of a
boundary element from a point, which may belong to that element or not.
The numerical evaluation of (8) through a Gauss interpolation process, for
example, of m points (m=6), gives:

m
I= E f(ai)wi
i=1
where G Wy correspond to natural coordinates and weights.

The number of points m for which integral (8) is evaluated is related to the
error made, and this error affects the results obtained at the boundary on
solving the system of equations.

A way to decrease this error consists in maintaining the number of integra-
tion points m, a variable depending on an error function of the distance of
the point from which it is integrated, x, and of the integrated element, e;
as defined by Lachat [16]. Or, using the subelement technique |2,3]|, each
element Te is subdivided in subelements Tse with local natural coordinates

(51, gz). Equations (8) then becomes:

SE ¢(2
1=ZJ £(¢) a¢ =
1

se=1

SE ra=1
-ZI £L0.5(a(¢ =0 ) *+ (£,+¢,))1.(L,=C )72 da =

=—1
se=1 =

SE m

=) T0us(0,m0 )Y | 0B (aE,mE ) * (L, e 0N Wy

se=1 i=1
where "'SE'' represents the number of subelements into which the original el-
ement '‘e'' has been subdivided.
With this technique, all the integrations permormed are numerical, and the
error made in the evaluation of the coefficients will depend on the subel-
ements number into which the element been integrated at that moment is di-
vided. The error also depends on some parameter as the minimum distance from
the point of integration to the element the distance to the centroid, the
minimum length required for the subelement obtained and the severity para-
meter needed in the process.

APPENDIX
FREE TERM CALCULATION

In this section we are going to calculate the expressions:

Ln _[Pe Ty s(xy) Ti(y) dl(y) = Ty5(x) T;0x) L
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In two-dimensional case:

dF€ = r da

r;= iv o= oilcosa + Gizsina e¢ (D2)

By using the expressions (D2) on (p1), it will yield:

<y P ] X -
Csq ™ (l/ZTfG)<XI1‘3'da .1m(r£— 22X _ X}

J
F50 dr
s i . 37 AX . —
+ Gjl'j'da dim{r=— — 2r=%= + X}
d
. b3 dr

. 3T =
+Gb Ida .1::;:5;— x)>

- (1/2")<(°§/°i ~1)(sina.cosa(0; 0, y +

- °i2°j2

L2
+
sin a(Oilﬁj2 + aizﬁjl)
- ab,5)

wh:re 3 represents the boundary external angle in the singular point x con-
sidered.

In the particular case of a smooth surface (a=m) c.. = -0.5 &... The matrix
5 which appears in (1) will be: J J

C.. =6.. +C..
it ij ji

Andwhere:§z=x ¢ > 2 2 + K 2
3r 1( 1r)[ 51/621' ] 1(Ezr)(-52 - 2/52r ]

2 2
+ K (€, 0)E,/E,T)  + K (€, 1)71/x]

ax - 3 2 2 2
OX -k (&, TIE /8y + 46, /E,T0] K (£ D)€, — 4/E,T"]
2 2
+ K (£,7)[28/,7) + K (g,r)(-2/x)
32§ _ 23 3 .2
So7 T K (& m)-8E s rT — £y 8T b K (€,r)(6/6,5° + 2& /7]
2 .22
+ K (& TI-3E/E,0" ) + K (£ )€y + /0]
a2x . 2 3 3 .2
02X - K (&, 0)[-12€ /4px" = 3&1/6;F) ¥ K (£ 5)(12/€,%° + 3¢,/7])
4 2 2 2_2 2
K LE TV —E /G, — Gk €T ] +K (€ x)E; * 6/x7]
EXAMPLE

Double-notched beam

This.application consists in calculating the stress in the tip of the notch
for impact loading versus Laplace parameter k.
The model, whose material properties and dimensions are shown in Figure 1

has been discretized

o(specific weight)

v(Poisson modulus)

Behavior of the problem plane stress

Dimensions and

-+

.gs-

<+

in 104 parabolic elements, as Figure 2 shows.

material properties.
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3
o=10-8(t:0)
—_— 2b
—
. 2. 3. 4. 5 6.

Detail A

been considered variable
the notch tip has a radius of r
statically, giving a value for t

The b dimension

stressed side(nodes
The stresses for internal points to a
are represented in Figure 3 for b = 15.
aries parabolically with the distance to
and lineary for a distance r/a < 0.002.

stresses versus 1/Vr for several models
jon 1/V/r < 3.16 (
intensity factor.

d stresses for each case of variation of para-

In Figure &4,
Only the reg
culating the stress
Figure 4 shows the normalize
meter b against the tip crack distance r.
intensity factors,
together with the theoretical values provi
utions |21]:

obtained from Figure b,

5= (1-a/b)~ %% [1.12(1-0.5a/D

The model has been analysed dynamically.
tion of points on the stressed side (
Figure 7 presents the stresses O
crack section far away from the cra

Discretization analysed (208 nodes, 104

in the range (b/h = 0.3-0.9),

0.5.

he displacement of the

distance r away from the crack tip
In the figure,
the crack tip for r/a >

it is shown how the

with different width
r > 0.1) can be considered for cal-

are printed in Figure 5
ded by Benthem and Koiter sol-

y-0.015(a/b)2+0.091( a/b) 1

Figure 6 shows the horizontal mo-
47-59) versus Laplace parameter
1 in direction x for points in the

CL tip a distance r.
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