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ABSTRACT:

A dislocation model of the delaying effects caused by overload is described.
The model is based on BCS model and superposition method of crack problems.
An exact expression for the crack opening displacement is derived within the
framework of the proposed model. Small scale yielding approximations and
some numerical solutions are also given. The model predicts that during crack
propagation through the overload plastic zone its growth rate decreases to a
minimum at first and then increases to the appropriate value which would
result if the overload had not been applied. Using this model the fatigue
crack growth delayed retardation behaviour resulting from the application of
the overload may be explained rationally. Results given by the dislocation
model are the same as that given by McCartney based on a Dugdale model.
Advantage of the dislocation model is that the defining expression for the
crack tip opening displacement is very clear in physical meaning and consi-
stent with the model itself.
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INTRODUCTION

Most theoretical investigations on the fatigue crack growth retardation
resulting from the application of single or multiple overloads have been
reported in the literature. Among which McCartney (1978) analytically stu-
died the delayed retardation behaviours resulting from overload, using the
Dugdale model. His work supplied a theoretical explanation for the delaying
effects of overloads. In the literature, several investigators have studied
the fatigue crack growth by means of the dislocation model, but they mainly
investigated the constant amplitude fatigue. There have been also investi-
gations on the behaviours of overload retardation and crack closure, such as
Kanninen and co-workers (1976,1980) with superdislocation pair model. The
present paper generalized the BCS model to problems of the delaying effects
of overloads and the fundamental method to be used is the superposition
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method. It is shown that results given by the present paper and by McCartney
(1978) are the same. An advantage of the dislocation model is that the
defining expression of crack tip opening displacement (COD) is very clear in
physical meaning and has more generality. In addition, the dislocation model
can consider combined effects of residual stresses, crack closure factors, etc.

PLASTIC DEFORMATION RESULTING FROM THE OVERLOAD
The overload often produces intense plastic deformation. Both the stationary

and growing crack are analysed as follows:

Stationary Crack

A so-called stationary crack means that the crack length remains constant
during cyclic-loadings. Let the length of a stationary crack be 2c,. Consider
the applied stress sequence 0—=6,—C,—~0 , a8 shown in Fig. 1, i.e., after an
overload the subsequent cycle is between the stress levels o, and 0 . For
convenience, we introduce stress ratios r and R, defined as follows

r=o0, /o0 >, =0, /o<1 (1)

First, consider the state A in Fig. 1, i.e., the applied stress is monotonic
increases from zero to G4, the associated dislocation density and extent of
the plastic zones are f18x) and :aq respectively. The problem can be solved
by using the BCS model. It is known that the BCS model makes use of a double
pile-up of dislocations to simulate elastoplastic cracks (see Fig. 2). It is
assumed that a crack occupying the |Xi< ¢, in an infinite plate which is sub-
jected to stress 59 at infinity. Instead of supposing the dislocations created
by the source at x=y=0 to be blocked at |x|=c, as in Fig. 2. We now allow
them to move into the material in the regions Ixi>cy. The maximum range is
x=aq. We suppose that a frictional resistance o, opposed the motion of dis-
location is the material's flow stress. In order to solve the problem, two
equations are required. One is the equilibrium equation for the double pile-
up of dislocations in terms of the density f4(x) and the other one is that
requirement of fq(x) to be bounded at x=a,. The two equations are

a

AP J‘l f1(x') dx’ -6, (-c°< x<c°)
-a‘l X - x' - = =0(x) = —(01—60) (CO<IXI<B1) (2)
a
J1 (x) dx -0 (3)
-a 2 - 3

with
= ub/2r (1 -v)

where 4 is the shear modulus; Vv is the Poissons ratio; b is the Burgers
vector; o(x) is the applied effective stress; P indicated that the integral
is a Chauchys principal-value integral. Substituting 6(x) in equation (2)
into (3), the extent of the plastic zones can be determined

a, /e, = sec(re), ®=16/20 ()
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Equation (2) has definite solutions, provided condition (3) holds. The
general solution has the form
L] L]
£,(x) o a2 - A% b J s (5)
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Fig. 1. The applied stress sequence Fig. 2. BCS model

The relative displacement at any point x on the slip plane is equal to the
sum of the Burgers vectors of all the dislocation passed through x, i.e.

X
J £ ax = v(x) - V(a) (6)

a

d(x,a) = -

where "a" refers to the extent of the plastic zones in general and V(x) is
the displacement function. For convenience of analysis, the solutions of
V(x) are given at first. Using equatioms (2), (4), (5), and (6), we get

V1(x)/V(c) = Z(co, 31,x). V(c) = 2(1-v) Go/ﬂJl «?2)
where

Z(co,a1,x) = coz‘(co,a1,x) - xz(co,a1,x) (8)
Ix(ai - <:§)}6 + co(ai - x2 ¥

z(c_,a,,x) = I 2 2,7 2 5% (9
x(a] - ¢ )" - ¢ (a] - x

, (af - (2))}‘2 +(a§ = xz)}‘z A
z*(c_,a,,x) = Ln
8™ (3‘3 - ci)yz - (af - xe)%

Secondly, consider state B in Fig. 1, i.e., the applied stress is reduced
from G4 to O, and friction stress G, is reversed in direction. The relevant
quantities are denoted by subcript '"2". The equilibrium equation is

ip J1 f, (x') dx' -0, (—c°< x<c°) 3
R -0, + 3 (c<IxI<ay)

The value 6(x) of the right-hand side in equation (11) is not known for

a<Ix|j<a,; however, we do know that f.(x) = f (x) in the region. Therefore,
we can use the superposition prlnciple. Subtracting (11) from (2) we
obtain
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(-c_ < x<c)
APJ o o
-a

(12)

as £,0x*) - £,(x') {—(01—62)
—_———— dx' =
X - X

, -(0'1—62)-200 (c°< |x!<82)

This equation is identical with the original BCS equation (2), provided we
make the changes fq(x)— f4(x)-fo(x), G4—~01-0, O5—+20, and aq—ap, thus
all of the above results can be applied immediately. In particular

a, / c, = sec ((r-R)® /2) (13)

Vz(x)/v(c) = Z(co.a1.x) - ZZ(co,az,x) (14)

here tap is the extent of reversed plastic zones for overload.

Finally, consider state C in Fig. 1, i.e., the applied stress increases again
from 65 toG. The relevant quatities are denoted by subcript "3", The equ- !
ilibrium equation for this case is easily written. Subtracting (11) from it
and once making use of results of the BCS model, we get

ag /co = sec ((r-R)6 /2)

V3(x)/V(c) = Z(co,a,‘.x) - 2Z(c°,82,x) + 2Z(c°,a3,x)

(15)

here 133 is the extent of the cyclic plastic zones.

Growing Crack

During the stress-cycling between values o and Oy after the overload, fatigue
crack growth will occur. Now consider some state D after state C in Fig. 1.
Assume the crack length to be 2c>2¢co,. Three situations must be considered
therein

Current plastic zones (co< x<a) extend into the reversed plastic zones of
the overload (co— x<ap). The equilibrium equation in terms of the density |
f(x) is

i f(x') dx' -°
o] g
-a,

(-c<x<c)

(c <Ixi<a) L1682

x - x' -(G—oo)

Subtracting (11) from (16) we get

a

f(x')—fz(x') A e 62)
AP f ————

dx' = -((0—62) -0)
o

-((6 -0_.) -20)

2 o

(—c°< x<c°)

J o (—cog x <c) (17)

(c<Ixi< a)
From equations (%), (5), (17) we get

(c2 - 2cc cos((1-R)O ) + ci)ﬁ
sin((1-R)O )

a =

V(x)/V(c) = Z(co.a1.x) - ZZ(co.aZ,x) + Z(co.a,x) + Z(c,a,x) (18)
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Current plastic zones extend into the overload plastic zones (32\< xlgﬂ'\l
In this case the effect of the overload plastic zones is considered only.
Based on similar consideration as above, the equilibrium equation is just
(16). Similar, subtracting (16) from (2) and making use of (3) we obtain

2%

(c2 - 2cc  cos ((r-1)0) + g

sin ((r-1)0)

V(x)/V(c) = Z(co.a,‘,x) —Z(co,a,x) + Z(c,a,x) (19)

The current plastic zones exceed the overload plastic zones (a>aq). The
effects of the overload may be ignored in this case. Thus, results of the
BCS model can be used directly as follows:

a/c = seco

V(x)/V(c) = 2(c,a,x) (20)

CRACK TIP OPENING DISPLACEMENT (COD)

Exact Solutions for COD

We take x=c in equation (6), then the COD can be obtained. Such definition
of COD is more general than conventional. Under monotonic increasing loading
there is §(c,a) = V(c), which is just the conventional definition for COD,
due to V(a) = O. But under cyclic-loading, the use of definition (6) seems
especially important. It should be pointed out that by making use of other
models rather than dislocation model, such as Dugdale model, to study the
effects of crack closure or overload, similar definition as (6) has to be
introduced directly or presupposions. Clearly, this is not concordant.
Making use of the associated expressions of V(x), the exact solutions for
COD can be obtained within the framework of the proposed model:

for az<a<ap

&ec,a)/V(c) = Z(co,a1,c) - Z(co,a1,a) -2Z(c°.82.c)

+ 2z(c°.a2,a) + Z(co,a.c) + 2Z(c,a,c) (21)
for apga<aq
&(c,a)/V(e) = Z(co,a_‘.c) -Z(co.a1,a) +Z(c,a,c) -Z(co.a,c) (22)
for a>a,
&(c,a)/V(c) = Z(c,a,c) (23)

Small Scale Yielding Approximation

In the case of small scale yielding, i.e., r<<1 and w, =a,-C << C,, the size
of the plastic zone and COD for a center crack in a infinite plate subjected
to uniformly tensile stress 6 in a direction normal to the plane of the crack

are as follows:
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1 2
Rs* 2%9
o= MI-MW_6_ /M (24)
We introduce the parameter t defined by

t = (e-c )/w, (25)

Thus, it is not difficult to show that

azga<a, — 0< t< (1-R)(r-1)
2 (26)
a,gaga,— (1-R)(r-1N< t < r°-1

It can be shown that in the case of small scale yielding conditions the
approximations of COD may be written in the form:
for 0<t<(1-R)(r-1)
2 2 «2 2 2 2
b6(c,a)/5, = r (H(t/r") - H(s*“/4r")) - ((r-R)/2) (H(4t/(r-R))

“H(s*°/(r-R)9)) + (8/2)% + (84/2)% H(bt/s*°) (27)

s t/(1-R) - (1-R), s* = t/(1-R) + (1-R)

for (1-R)(r-1)<:t<;r2-1

Blc,a)/ o = r° (H(t/r2) -H(s*/4r)) + (8/2)°
~(8*/2)° H(bt/s*7) (28)
s = t/(r-1) - (r-1), 8* = t/(r-1) + (r-1)

for r2-1<t< o<

0(c,a)/ 64 = 1 (29)
The function H appearing in the relations (27) and (28) is defined by
%
H(x) = (1-x)% - (x/2) Lp 12 {1=%) (30)
1 - (1-x)

Hence, by using the dislocation model we have obtained the same results
given by McCartney (1978). However, the definiting expression based on the
dislocation model for COD is more clear in physical meaning and consistent
with the model itself.

Crack Tip Closure Behaviours and the Delayed Retardation Effects

Let the first derivative of equation (27) with respect to t equal to zero,
we find, when

t = (1-R)% (31)

equation (27) will give a minimum value of zero. It means that during
cyclic-loadings after overload the crack tip begins to close at t = (1-R)?
thus the growth will stop. Based on the effective range of t in (27):

O0< ts< (1-R)(r-1), it is clear that value t in (31) must be in the same
range too. According to this, the precondition in which equation (27) has
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a minimum value of zero is
r+R=>=2 (32)

Similarly, it can be shown that when

t = (r-1)2 (33)

and precondition (32) holds, equation (28) has a minimum value of zero. So
far we can conclude that during cyclic-loading after overloads the precondi-
tion resulting in crack closure or stop is the equation (32). When (r+R)=2,
thus (r-1) = (1-R), then positions of minimum value of zero for (27) and (28)
coincide at a point, t = (1-R)(r-1), i.e., at the boundary of reversed plastic
zones for overload. The variations of COD with t are illustrate in Fig. 3
for conditions (r+R) =>2. For comparition, curves obtained by the conventional
expression &(c) = V(c) are also shown in Fig. 3. When

r + R<< 2 (34)

the crack tip closure never occurs but there is minimum value at t=(1-R)(r-1).
Behaviours for this case are illustrated in Fig. 4. If COD is the governing
mechanical parameter on fatigue crack growth and supposing that crack growth
takes place at the point of maximum value of the applied stress, then the
overload delayed retardation effects may be well explained by equations (27)
and (28). It can be seen from Fig. 3 and 4 that during cyclic-loading fol-
lowing the overload, with increasing of the crack length ®(c,a) at first
gradually decreases to a minimum value and then subsequently increases again.
When t>(r2-1), the effects of overloads disapear. That is, these effects

may be divided into two distinct stages. For example, with (r+R) < 2, the
stage of overload retardation is in the interval of (1-R)(r-1)<t < ré-1,

and the stage of overload delayed retardation is in the interval

O0< t< (1-R)(r-1). These results quantitatively agree with numbers of
experimental facts. Finally, we consider effects of the self-unloading.

It can be shown that as the applied stress decreases to o' = 0, , condition

in which crack tip closure occurs is

8(c,a')/ 6, = (1-R)Z/2 (35)

where a' is the extent of the plastic zones corresponding to ¢' and R'=0'/C.
Similarly, when the applied stress increases from 62 to ¢"< ¢, crack tip
reopening just occurs, then we have

(R -R)?
- 2

8(c,a") _ (1-R)°
- 2

R'-R |2
50 (1-H(( — = )< )

) (36)

where a" is the extent of the plastic zones corresponding to G" and R"=06"/C.
Following the concept of crack closure, the effective stress intensity factor
range may be written as

> 4 min

AKeff/AK = (Gmax - 6°p)/( Ociaw = O )

- P o "W = ”n
For the present case omax =0, Gmin = RO, 6°p =0" = R"60 . Thus we get

AKe“./AK = (1-R")/(1-R) (37)
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where R" can be solved from equation (36). Therefore, based on the present
dislocation model AKeff may be evaluated in priciple. After that, using
some appropriate formula for the fatigue crack propagation rates, the num-
bers of cycles for the overload delayed retardation can be evaluated.

50 R=0.4
7\/ R=0.2
-\\_* R=0.0
< N
[ R=-0.2
r =2
2.0 EERRLD o5
o o
N @«
) <
Q o
rof———— T T rvof —/———— — — —
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R=
R=
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Fig. 4. The dependence of &(c)

Fig. 3. The dependence of &6(c)
and V(c) on parameter t

and V(c) on parameter t

CONCLUSIONS

Definition (6) for COD given by the dislocation model is more general.
Under cyclic-loadings it seems especially important. By using the BCS model
and superposition method to analyse the overload delayed retardation, the

effects of overload can be resonably explained. Making use of the disloca-
tion model, the combined effects of the residual stresses, the crack closure
factors, etc, can be taken into account.
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