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ABSTRACT

In this paper, recent studies concerning path-independent integrals, of
relevance in the fracture of solids, and the applications of these
integrals, are critically summarized. Specific topics dealt with include:
(i) unsteady dynamic crack-propagation 1in (nonlinear) elastic solids and
(i1) slow stable, as well as fast crack propagation in elastic-plastic
materials, which are characterized by an (incremental) flow theory of
plasticity, and which are subject to arbitrary loading (and unloading)
histories.

INTRODUCTION

It is almost redundant to say that parameters which quantify the severity
of the crack-tip environment, but which may be evaluated as
path-independent integrals based on far-field data, have played a dominant
role in the enormous strides that have been made in the past 15 years or so
in the subject of the mechanics of fracture. It is now well understood
that the most widely used of such integrals, the so-called J integral, is
valid theoretically, only in the context of incipient crack growth in
(nonlinear) elastic materials. An excellent survey of the literature
pertinent to the present topic of discussion has been earlier presented by
Rice [1] in 1976 and by Bilby [2] at ICF4 in 1977. Since that time, a
number of works dealing with theoretically valid ‘'path-independent'
integral parameters in (nonlinear) elasto-dynamic crack propagation, and in
quasi-static stable as well as fast fracture in elastic-plastic materials
characterized by a flow theory of plasticity, have appeared. The present
paper is an attempt at a summary of this literature, as well as that of
some of the authors' work in this area.

Contents of this paper, in the order of their appearance, are: (i) a
discussion of various path-independent 1integrals for dynamic crack
propagation, in 1linear as well as nonlinear elastic materials, that have
been introduced in literature, (ii) a critical evaluation of their validity
as fracture parameters and their physical interpretation, if any, (iii) a
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discussion of general conservation laws in (nonlinear) elasto-dynamics and
their relevance, or lack thereof, to the mechanics of fracture, (iv)
certain path-independent integrals of relevance in slow stable as well as
fast fracture, under arbitrary loading (and unloading) histories in
materials characterized by (incremental) flow theory of plasticity, and (v)
some 1illustrations of the applicability of path-independent integrals,
which are shown to be relevant in this paper, in dynamic, elastic-plastic
fracture problems.

ELASTO-DYNAMIC CRACK PROPAGATION
Preliminaries

We consider the material to be nonlinearly elastic and finitely deformed.
We employ a fixed (global) cartesian coordinate system such that xj and yy
refer, respectively, to the coordinates of a given material particle before
and after deformation. We introduce another 'local' cartesian system Xj
such that X] is locally normal to the crack border, X; normal to the crack
plane, and X3 is locally tangential to the crack border. The deformation
gradient 1is represented by Fj; = yj j = (Qyi/ax.) such that dy; = Fjjdxj.
Henceforth in this section, we shaii employ thé 'nominal’ stress, denoted
here by ¢t;;, as the measure of stress in the deformed body. Note that tij
= (TR)ji where Tp is the first Piola-Kirchhoff stress [3].

The boundary-value problem in elasto-dynamics is in general posed by the
equations [4],

linear momentum balance): t + £, = pud .
( m ) 13,1 § = Ay (1.1)
(angular momentum balance): Fiktkj = ijtki (1.2)

: = 9W/3 = HW/s
(constitutive law) tij W/ Fji WW/ﬁeji (I.3)
= . = - s = +
where, eji uj,i > .uj yj xj - Fji eji Sji

.c): =t 1.4
(traction b.c) Nty £ at S, (L.4)
displ t b.c): . = u at S Es5
( placemen c) Yy uy ' ( )
initial itions): = ul(x) G, = v ( -0 (1.6)

(initial conditions): uj = uj Xy . uj = vj xk) at t = s

In (I.1-6), all components refer to the fixed (global) cartesian system.

In (I.1), f; are body forces per unit initial volume, ¢ is mass density of
the undeformed body, and U; are accelerations; where (°) denotes a material
derivative. Eq. (I1.2) reduces to the condition of symmetry of the stress
tensor if displacements and their gradients are infinitesimal. Eq. (1.3)
is wvalid, in general, for an inhomogeneous as well as anisotropic body.

The condition of material frame indifference imposes certain restrictions
[3] on the structure of W; and hence, in general, it is a function only of
Cij = Fkiij' When the structure of W is thus properly defined, condition
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(I.2) becomes inherently embedded in the structure of W [see, for instance,
Ref. 4]. In (I.4) and (I.5), Sy and S, are parts of the external surface
of the undeformed body, where tractions and displacements are respectively
specified.

Self-Similar Crack Propagation

Consider the dynamic propagation of the crack in a self-similar fashion,
such that the crack length increases by (da) in time (dt), with a

non-constant velocity of propagation, c¢c = (da/dt). The energy-release (or

equivalently the work done in creating a new crack-surface) per unit of
crack-extension, denoted by G, 1is given, from global energy-balance
considerations, as:

- d
G t, 7—ds - —— [ (W + T)dv (I.7)
da v

Hi

s i da
t

where Ei are external tractions on S, uj are displacements, and W and T
are, respectively, the strain and kinetic energy densities (per unit
undeformed volume) of the cracked elastic body, V.

Now consider a "core" region, V_, near the crack-tip, which is enveloped by
the contour [.. For instance, in two-dimensional problems [ may be
considered to be a circle of radius €, while in three-dimensional problems,
it may be considered to be a toroidal surface whose axis of revolution
coincides with the crack-front and whose cross—-section 1is a circle of
radius €. Thus, the region (V-V.) excludes the crack-tip. See Fig. 1 for

further nomenclature. Considerations of energy balance in this region
(V-V.) leads to:
duy
0 = (t, =—)ds - (W + T)dv (1.8)
S-T, i da da V-V,

It 1is clear that S-T. is now the boundary of (V-V.). Use of (I.8) in (I.7)
results in the following relation for G:
du;
i

d
t da ds - da v (W + T)dv (I.9)

€ €

G =
T

In self-gimilar crack propagation in an elastic material, wherein
loading/unloading take place along the same path in a strain/stress space,
it can be seen that the asymptotic (singular) solutions at the crack-tip at
time t [when the crack-length is '"a"] and at (t + dt) [when the
crack-length is (a + da)] are self-similar. However, the strengths of such
singular solutions may depend on the crack-lengths and hence may be
different at time t and (t + dt). Based on these concepts, it can be shown
[5] that:

d J
q (W + T)dv = (W + T)N ds - — (W + T)dv (I.10a)
a T 1 v Ja
£

Ve € e
du-L Ju i
T ds = b = = ) ds (I.10b)

aud Y% 4qa p ida

wherein, as seen from Fig. 1, X; is along the crack-axis, and Nj is the
direction cosine between the X; axis and a unit normal to the contour [..
Using (I.10) in (I.9), it is seen that:
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Bu 3 Bui
G =Lt : [(Ww+ TN, - ¢, 7%, ~lds - . 57 W+ T) -t 8Tldv (I.11)
>

€>0
€

It can be shown [5] that since d(W + T)/9a has the same singular behaviour
as (W + T) itself, the second term in Eq. (I.1ll) tends to zero in the limit
£+0; whereas the first term 1in (I.11) has a finite limit when e»o [5].
Thus, we have the expression for energy-release rate:

du,

*]ds (1.12)

G = Lt [(w+1‘)N1 ':iW

€0 FE
as given in [5] and also in [6,7] though not as conclusively for a crack
propagating with an arbitrary history of motion.

From a point of view of application in a numerical analysis of
elasto-dynamic crack propagation in a finite body, it is preferrable to
evaluate G from an integral over a far-field contour. To this end, we
attempt to write:

Du

i BX ]ds + R (E«13)

G = [(w + T)N1
S

where S 1is the external surface. From (I.12) and (I.13), and realizing
that the divergence theorem may be applied to terms awﬂ;xl and aTﬁ)Xl in
the region V-V., we see that:

du, du,
i i
R = [(w+ 'r)N1 t 3% lds - [(w+ 'r)N1 L% lds (I.1l4a)
TE 1 S 1
3ui Bﬁi y (1.14)
= [pCa, - £,) = - pu, ~=— ldv 14
Tt 17 e 19X

€&

In arriving at (I.14b), the conditions: (i) that in the considered elastic
material, W is not an explicit function of X; , i.e. the material is
homogeneous along X; and (ii) that the dynamic equilibrium, (I.1) holds,
have been used. Further, using a relation similar to that in (I.10a), we
obtain:

du. Jus 3
1 d p 5 [s
—tds - = - —ds - | (W + T)d
/ti da ds da/(w + T)dv f i 7a ds 3a ( )dv
S v v
du,
+ -

u
= 1ds (1.15)

[(W+T)Nl ti S—X—l—

S

Summarizing the relations (1.7,.9,.13,.14, and .15), we have:

duy d
G = t, 77— ds - — (W + T)dv (I.16a)
s i da da v

dug dug 3
- _ 2 e L (I.16b)
= [(w+ T)N1 t 3% 1ds +/ti Ta ds 3a (W + T)dv
S 1 S v
du .- 8U1 . }ﬁ I.160)
= [(wW + T)N1 -ty 3 ]ds + Lt [Ll(ui - fi) T T ldv ( c
S l V-v 1 1
€
Ju . )Bui Bul
= [(Ww+ T)N, - ]ds+Lt @, - £)sg— - M, s5ldv
s 1~ 8 Bx e Juv, i i axl i axl (I 16d)
C
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du,
= Lt / [((W+ TN -t —~=]ds = J' (I.16e)
T 1
g

>0

The sum of the far—-field integral on I [which, it should be noted, is fixed
in space] and the attendant volume integral, as in (I.16d) has been labeled
J' 4in [8]. However, it was derived in [8], for infinitesimal deformations,
based on a simple modification to a path-independent integral that was
deduced from a general conservation law in elasto-dynamics in [5]. The
sense of path-independence of J' embodied in (I.16) implies that for any
closed volume V¥ with a boundary TI* not enclosing the crack-tip, as in
Fig. 1, we have:

du . duq 30y
./;*[(W + T)Nl - i 3X ]dS +./;*[O(ui - fi) giI'— pui 3X ]dv =0 (1.17)

which may easily be verified when (I.1) holds, and W is not an explicit
function of Xj.

Because the use of J' as defined for any path I as in (I.16d), involves a
volume-integral , the above notion of path-independence has been pronounced
by many to be useless. The authors take an exception to this viewpoint,
which they find to be somewhat orthodox. True, the evaluation of (I.16d)
involves taking the 1imit of the volume integral to the crack-tip; and
thus, on the surface, it appears to involve a "knowledge of the crack-tip
fields", which the so-called J integral of elasto-statics [when uj = 4; = 0
in (I.16)] does not involve. First of all, it is clear from (I.16d) that
its use does not require a knowledge of the crack-tip stress—strain fields,
but only of displacement, velocity, and acceleration. Furthermore, a
comparison of (I.16b) and (I.l6c) reveals that

Bui

.90y .oy Oy 3 [
Lt vy [oui 3_x1—+ (fi - pui) a—qldv = vg (W + T)dv - S ty 55 ds
7o > J V¢ (I1.18)

and thus, the 1l.h.s. of (I.18) remains finite in the limit €>o. This is
interesting if one notes that, in known analytical asymptotic solutions
(81, wuw; ~ 0o(r~1/2 ) and a;~ O(r‘3 2 ); and hence, on first glance, the
l.h.s. of (I.18) appears to contain non-integrable singularities. It has
also been verified directly [8] that for known analytical asymptotic
solutions for infinite bodies, the volume integral in (I.16) does have a
finite 1limit, due to the fact that the angular.variation of the integrand
is such that:

T [e
Lt [ (plijuy (drdrlds >0 (1.19)
>0 J-m  Jo 4

Even though finding the solution of wu. i u. i u. near the crack—tip in a
finite body is a difficult problem analxticallz! %t is a relatively simple
task in computational mechanics. This has been demonstrated conclusively
[9,10] by the authors in a variety of crack-propagation problems in finite
bodies, even while wusing the simplest of crack-tip finite elements which

do not model any of the singularities in strain, velocity, or acceleration.

If one considers the energy-release rate per unit time in self-similar
elasto-dynamic crack propagation, one sees that this quantity is
represented by:
duy
CG =C [(W+ T)N - ——-]dS (I.20a)
Ie 1
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au
= [(W+ TCn - Ct lds (I.20b)
j;e k k ki Bxk

where C is the non-constant velocity of crack propagation along X3
direction, N} is the component of a unit normal to I'c along X1, while Cy
and n are components of the instantaneous velocity vector and the unit
normal to T, respectively, along x) directions (see Fig. 1). [Note that
the velocity vector C with |C| = C, along the X direction in self-similar
propagation, may be considered to have components Cy along x; directions].
It is now a simple task (i) to apply the divergence theorem, (ii) use the
coordinate invariant forms of the linear momentum balance laws of (I.1),
under the assumption:

3 3

%w ")aw qu - (1.21)
e Y51 "X

i.e., W does not depend explicitly on all the xj (or the material is
homogeneous in all the x directions), to derive from (I.20b):

Bui
CG = C,J, = {Lim [(W+ T)n t, =— lds
150 SR o k © M
91
- o, —= + (£, - pip) —ldVlC (1.22)
i95x i
VT_VE k

The sense of path—independence embodied 1in (I1.22) is iimilaz to that in
(1.16,.17). In the above, S p which is equal to (S.p + S p) [+ and -
referring, arbitrarily, to the crack faces] is the crack-surface enclosed
within I, while S. is the total crack-surface. Thus, an evaluation of J}
not only involves a volume integral, but also an integral along the crack
faces. The infinitesimal strain counterparts of the JL integrals have been
first stated in [8], based on a simple modification to the J, integrals for

dynamic crack propagation given in [5].

It is important to note the meaning of (I.22)--it still governs the energy
release per unit time, due to self-similar propagation (along X, axis). J}
would simply characterize the total energy change due to a unit translation
of the crack as a whole , rigidly, in the x) direction. Thus, Jk does not
Characterize the energy release due to a unit motion of the crack—tig in
the X direction (and thus kinking the original crack). In fact there are
no simple integrals that characterize the energy-release due to kinking of
a crack, as is often erroneously implied in literature [15,16,29]. This is
due to the fact that in deriving (I.10), which forms the basis of all the
ensuing path-integrals thereof, use has been made of the self-similarity of
solutions at time ¢t and t + dt, which is valid only in self-similar crack
propagation but not in the case, in general, of a kinked crack.

Assuming for the moment that the global and the crack—-tip coordinates
coincide, one may define:

3ui Bﬁi Bu
= - = - 1, ~— + - \';
J' I;io e [(W+ TN, - ¢, aleds vy Loy 7%, (f], - pi)sy ~1d
cl r "e (1.23)
which would characterize the total energy change for a wunit rigid
translation of the crack as a whole (and not a unit growth of the crack-tip

alone) 1in the Xz direction. Assuming zero body force, traction-free

187

crack-faces, and elasto-static deformations, one may reduce (I.23) to:

Bu
+ -
J, = (WN, - )ds + Lt (W - W )ds (I.24)
o [y gt a e [
el
wherein, for a flat crack-face, N; = - NE = - 1. The definition of J, of

Budiansky and Rice [11], on the other hand, does not involve the crack-face
integral, which accounts for discontinuities of W along the crack-face.
Thus, as also noted by [2,12], J, as given by [11] is not path-independent.
Even though (I.24) appears to involve a knowledge of crack—-tip W for its
successful application as a path-independent integral, the use of (I.24)
has been conclusively demonstrated [10,13] in computational approaches
using simple (non-singular) crack-tip finite elements.

From the above discussions, it should be clear that neither the integrals
J& nor any other similarly '"path-independent" integrals provide any
information as to kinking of a crack, or of the direction of propagation of

the crack-tip in anything other than a collinear fashion, contrary to

speculations often made in literature [14,15,16].

Using the asympotic solutions in self-similar crack propagation, even under
arbitrary time history of motion of the crack-tip, viz., G; ~ - CO3u, /BX .
it 1is seen that the energy-release rate expression in (I.20a) reduces to
that of Freund [17]. It is worth noting that (I.20a) as well as Freund's

result are valid for an arbitrary shape of the loop I'. near the crack-tip.

On the other hand, if consideration is restricted to steady-state (i.e.,
the field 1is invariant w.r.t. an observer moving with the crack-tip)

self-similar propagation at a constant crack-tip velocity, it is seen that

everywhere in V, one has: a; = - C3duy/3Xy; u1 1= = €3 2u; /3% ui =
¢ 2q, /3X% [Note, however, even at constant velocity, unsteady conditions
in general imply that: u; = (Qu/d3t) - C,;(Du; /BX ), and u, (32u./3t2) +
c2(5 2y, /WX ) - 2¢ ( )2u1 / 3Xy 36)]. %us, when body forces £ = 0, for
steady state, constant velocity propagation, the volume 1ntegral in (I.16d)
disappears; and the resulting expression, with 2T = C2(dus /?)Xl)2 becomes
identical to that given by Sih [18], even though the far—field contour
considered 1in [18] moves along with the crack—tip at the same velocity. It
may be noted, however, that such steady-state constant velocity propagation
seldom occurs 1in practical problems of fast fracture in finite bodies; see
[19] for further details.

In as much as J'(Z G) as defined in (I.16e) has a well-defined physical
meaning as the crack-tip energy release rate and can be conveniently
computed from simple numerical procedures from far-field quantities through
(I.16d), it can be used as a parameter governing elastodynamic crack
propagation  and arrest. The relation between J; and the dynamic
stress—intensity factors are given in [8]. J' is in general a function of
the crack-tip velocity [8]. In a dynamic fracture problem, initiation of
propagation occurs at J' = J! and during crack propagation, J' = J{(C)
where Jj and Jb are material properties. Examples of prediction of
crack-propagation histories and crack-arrest wusing these «criteria, and
comparison with experimental results may be found in [9,10,13,19,20].

As noted, the far-field path I' in (I.16d) is fixed in space. On the other
hand, considering a far-field contour T to be a rigid path surrounding the
crack-tip and in translation at the same velocity C along the X; axis, a
path-independent integral, denoted here by J*, was given by Bui [21,22] and
Erlacher [23] for infinicesimal deformation:

AFK VOL 1-u
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D 8 .
* = e o] - - po + — S, 1.25)
J -/;[Wnl MYy, 4 Tn, ;ujuj,lclnllds Dt-/;‘ujuj,ldv ( >

When the material derivative for a moving control volume containing
singularities is properly treated, it may be shown [see 8,19] that (I.25)
is equivalent to (I.1l6d). It is, however, the experience of the authors
that (I.16d) with a fixed path is easier to use directly in a computational
scheme [9,10,13,19,20].

For linear elastic materials undergoing infinitesimal deformations, Irwin
[24] and Erdogan [25] gave the expression for energy-release rate in
dynamic crack propagation, as:

Ld a(t)
CG(tO) = - z(dt)to /;(t )ti(Xl,to)ui[(Xl - <a(t) - a(t()))),tc’]d)(1 (1.26)
(o]

Thus, it is the work of tractions at t, in moving through the displacements
at the corresponding points at time t  + dt. The validity of (1.26) has
been established for linear elasto-dynamics by Gurtin and Yatomi [26]. On
the other hand, Achenbach [27] gives, for finite deformations as well as
nonlinear elastic behaviour, the expression for G, as:

1 ate . + . - (1.27)
G = (C) lgi:lol 8—6012(X1.0.t)[u1(X10 3t = “1(X1’0 .t)]dX1 .

where U; (X ,Oi,t) denote the particle velocities at the crack surfaces, X =
0%, The tip of the crack is denoted by X, =aand ca small number. Now,
consider the path I'_ in (I.12) to be a rectangle of height 28 (in X,
direction) and width 2e (in the X, direction) and centered at the
crack-tip. Thus, we may write from (I.12) that:

Jdu.
G =1Lt Lt [(W+ TN, - t, —~ 1ds (1.28)
1 i3
ero §>o 1
aui
=Lt Lt - tiaTds (1.29)
e &0 1

since N is zero on segments parallel to X, axis, and the integral of
(W + T)N; vanishes along segments parallel to X axis in the limit §-o.
Also, near the crack-tip, uj ® - Cduj/9Xj;. Thus, it appears on first
glance that (1.27) 1is the correct 1limit of (I.29). However, this has
conclusively been disproved by Yatomi [28] who shows that the limit &0
must be taken after the integral in (I.29) is evaluated; and in any event,
(I.12) always 1leads to the correct result, even for finite deformation
nonlinear elastic problems, irrespective of the shape of Fg. For the
special path described above, the general validity of (I.28,.29) is
established by Gurtin and Yatomi [26].

Strifors [15] and Carlsson [16], on the other hand, apply the "principle of
virtual work" to an arbitrary part Vr of the body containing a crack (as in
Fig. 1), which they consider to have a "finite cohesive zone'". Their
[15,16] definition of "an apparent crack-extension force'", written below,
for instance, in the X; direction, is arrived at by them [15,16] by
considering virtual displacements of the form Su; = -0u,/3X; over Vp as
well as over a cohesive zone of size €, as:

F = [t

i Bu ,1’3X1) - (f; - oiii)(?)ui/axl)lds

i30 3
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€
- +
- t,(3u,/3X,)ds = Lt tF1u, /3% )7 - (Bu,/3%,)7 14X (1.30)
i i 1 i i 1 i 1 1
T+s >0 Jo
cT

From the preceding arguments it may be seen that the extreme right-hand
side of Eq. (I.30) does not have the meaning of an energy-release rate even
in the limited situations when (I.27) may be valid, because of the only
one-sided limit of integration appearing in (I.30). Further, since
tij(SUj i/3%X1) and (ﬁiBuiIBXI) may have singularities of order greater than
(r=1), ’the 1limit of the integral over V, must be considered separately.
Thus, even though F in (I.30) 4is path independent, its meaning is not
clear. Kishimoto, Aoki, and Sakata [14] define a parameter such that:

J = - . ti(Bui/Bxl)dS (I.31)
where FQE is a non-distorting 'small' contour which moves at the same speed
as the crack-tip. Even though J as in (I.31) is defined in [14] as ome of
the components needed in analyzing crack-growth at an angle to the initial
direction, this concept 1is questionable for reasons discussed earlier.
Further, for arbitrary [, J as in (1I.31) is the rate of work done on the
process zone of size T, by the surrounding medium and is not the energy
release to the crack-tip. From (I.31), and the divergence theorem, they
[14] derive the "far-field" expression:

R 0ui 3ui
J = (WN, - t, =—)dS + (pu, -— £,) —— dv - WN.ds (1.32)
/r+s 17 1% I T LY g4
cl € €
Note the presence of a near-field integral on T _, in the "far-field"

expression (I.32). In [14], this integral over I'; on the r.h.s. of (1.32)
is dropped (see Eqs. 24,25 of [14]), by considering a special case of T¢ to
be a rectangle of size (25 x 20) centered at the crack—tip. However, it
should be noted that the integral of WNj] over I'c does not vanish for
arbitrary T_. Also if the integral over Tc is dropped from (I.32), and the
resulting integral is considered in the limit when T is shrunk to T', one
obtains a near—field definition of J from (I.32) that is different from the

original ,definition, (I.31)!. Kishimoto et al. [29] in a later paper,
redefine J as
J =./; [WN1 = ti(aui/BXI)]dS (1.33)
€
= [NN1 - ti(aui/axl)]ds + (oui - fi)(aui/BXI)dV (I.34)
F+SCT V-VE

and consider [29] J in (I.33,.34) as the "energy release rate per unit of
crack translation in the X; direction". Comparing (I.33) with (I.12), it
is seen that such is not the case for arbitrary shapes of I', since (I.33)
does not contain the rate of change of kinetic energy in the energy-balance
for dynamic crack-growth.

It is easy to see that:

V—VE V—VE

= (DuiuiNlds)ds - puiuiNlds - Qui(aui/BXI)dV (I1.35)
1"+scr FE v—vE

pui(aui/axl)dv =/ [a(p"iiui)/ax1 - pui(s'\ii/axl)]dv
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Using (I.35) and the rather extraordinary case when f; are constants [i.e.,
£oo0= £y (x¢ )], one may derive from (I.34), what Ouyang [30] defines as a
parameter Y for elasto-dynamic crack propagation (and an associated
parameter Y6' slightly different from Y3, to account for plasticity), as:

Y3 =J + QuiuiNldS = . [(W+ puiui)Nl - ti(aui/axl)]ds
£ >
a o [WN1 - ti(Dui/le) + (pui - fi)uiNI]ds - tio vy oui(Sui/SXI)dV
s € (I.36)

Comparing (I.36) with (I.12) it is seen that Y, is not in general an
energy-release rate for elasto-dynamic crack-propagatgon, and hence its use
as a fracture parameter is questionable. Likewise, the parameter Y, of
[30], which is the integral in time of Y, (similar to the time integral of
G of (I.12) which would give the total fracture energy up to the current
time t) is not a meaningful fracture parameter.

More recently, however, Aoki, Kishimoto and Sakata [31] define a parameter
which, for elasto-dynamic crack-propagation, may be defined as:

J= |t DN - e Gu /X bds (1.37)

lend

= [WN -t (Bu,/5X,)]ds + (pu, = £.)0u,/dX, )dV + TN.ds

T+rs 1 i i 1 vy, i i i 1 FE 1 (1.38)
Note the presence of a '"near—-tip" integral (over I'_) in the supposedly
far-field expression (I.38) for J. They [31] go on to consider the limit
of (I.38) for two different shapes of lce In any event, the presence of
the integral over [ makes it inconvenient to use (I.38) in a meaningful
computational sense (i.e., without an accurate near—-tip modelling). It is
a simple matter to wuse the divergence theorem and eliminate the integral
over T from (I.38); in which case, the resulting far-field expression for

€
the energy release rate is none other than J', of Eq. (I.16d).

Finally we mention the following path-independent integrals of Nilsson [32]
and Gurtin [33], respectively, for a stationary crack in a linear
elasto-dynamic field:

_ = ; 2- - - T 05 T
1(p) —fC[(w + 20 pTuju N ti(Bui/3X1)1d5 (1.39)
and
= 3 u - : I.4
I=13 F[(ojk*uj,k + Duj*uj)N1 Nkujk#)uj/qxl)]ds ( 0)

In (I.39) 1I(p) denotes a Laplace transform of I(t), and (~) denotes a
Laplace transform of ( ). Likewise, in (I.40), (f) * (g) denotes a
convolution integral in the time domain, of two functions f(t) and g(t).

Thus, both (I.39) and (I.40) do not easily give the instantaneous value of
the crack-tip parameter, which 1is useful in analyzing dynamic crack
propagation and arrest in a finite body. Further, in the case of a

stationary crack in a dynamic field, the energy release due to incipient

crack growth at any instant of time is given from (I.12) as:
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Gstationary =./; (W, - ti(a“i/axl)]ds (1.41)
3

du,
= | (wN, - t.(u,/3%. )]ds - Lt (f, =04,) — dv (1.42)
/; IR S LA oo Ju-v_ S T

(I.41) follows from (I.12) since T is no longer singular at the stationary
crack-tip; (1.42) follows from (I.41) due to the divergence theorem.

We now turn to a class of "path-independent integrals" derivable from the

application of Noether's theorem [34] in the form of "conservation laws'
[7,35-38].

""Conservation Laws' and Their Relevance to Fracture Mechanics

The density of the "Lagrangean" for a (linear or nonlinear) elasto-dynamic
problem is defined as L = (W-T-P) where W is the strain energy density, T
the kinetic energy density, and P the potential of external forces. In
Lagrange's description of motion (with material coordinates x. as
independent variables), L may be considered, in general, to be a funétion
of the variables y; ;(= Qyi/3x1) (or equivalently of “i,j)v Gi, u;, as well
as that of the independent variables x; (for a non-homogeneous system) and
t (for a nonholonomic system). Thus,

t
* = ¥
L ./: u/;L(xi,ui,ui,ui,j,t)dvdt (I.43)
o

Noether's theorem [34] concerning the invariance of L* w.r.t. certain
transformations of the arguments of L leads to corresponding conditions
which may be 1labelled as conservation laws. Eshelby [7,39,40] was the
first to intuitively recognize the importance of these in connection with
'forces' on point defects and cracks. Gunther [35] was apparently the
first to apply the formalism of the Noether's theorem, to obtain general
conservation laws in elastostatics. Knowles and Sternberg [36] provided,
independently, a thorough treatment also in the case of finite
elastostatics; and this work was later extended by Fletcher [37] to linear
elasto-dynamics, although the claim in [37] that equations (3.1-.4,.6)
therein can easily be extended to finite elasticity should be viewed with
some caution. More recently Golebiewska-Herrmann [38,41] has embarked on a
study of conservation laws in finite elasto-dynamics using both Lagrange as
well as Eulerean descriptions of motion, although the attempt in [41] to
relate these only to elastostatic fracture mechanics appears formal at
best.

Here we briefly discuss the case of Lagrange's description of motion and
consider the conservation laws that arise from (I.43) when it is required
to be invariant wunder various transformations, when body forces fi are
present:

(i) invariance under time translation (E =t + 7):
d . J . IL

- — (W+T)+f + — = - = :
dt ( ) i axk (tkjuj) ot lexplicit (I.44a)

when L does not depend on t explicitly, this ‘leads to a 'conservation law'
for a closed volume V* (with a surface *, see Fig. 1) that does not
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contain the crack-tip:

d

Fra (W + T)dv - f£.d dv - nkt u,ds = 0 (I.44b)

- @ U ki1

Eq. (I.44b) 1is analogous to the emergy-balance relation (I.8) except for a
subtle difference: (1.44b) does not imply any crack-growth, whereas (I.8)
is written specifically for crack-growth.

(ii) 1invariance under translation of yi(s'i = ¥y + ei):
t,. , + £.= o0, .
ij,1 3T CIshaa
or

n,t, ds + f.dv - ii,dv =0 1.4
/F*iij /V*J gk Elwishl

which are, respectively, 1local and global equations of balance of linear
momentum.

(iii) invariance under rotations of yi(S'i =y + eijkwjyk):

Here, e is the alternating tensor. The balance law is:

ijk
d :
aeteePhYy) * __(eijk pk¥3) * egfiyy < O (1+563)

When (I.45a) 1is used, it is seen that (I.46a) is but a disguised form of
the angular momentum balance, (I.2). The corresponding 'conservation law'
is:

e,..y.(f = pu )dv + e,..y.nt ds =0 I.
N iJkyJ k PYy ./;* iJkyJ Ptk (I.46b)
Note that V* is the volume in undeformed configuration.

(iv) dinvariance under translation of xi(}i =%y e 51):

Note that translation of the coordinates in the undeformed body are
considered (or equivalently the translation of the elastic field referred
to the undeformed geometry). The balance law is:

4 Coagu, ) - +—[(w— u 1= 2D (1.47
at C(Poyuy )~ By Wi 7 tigy,1 3%, exp. -47a)

When we consider: (i) a volume V* that does not contain any singularities
such that each of the terms in (I.47a) is integrable in V*, and (ii) L does
not explicitly depend on X i.e., the material is homogeneous in all the
xi directions, we obtain from (1.47a) the conservation law:

(Du u - fu >dv + W-T - t. ds =0 I.47b
V* 495, 3 K, 1 r*[( Jny Juj,i] s ( )

The above conservation law, and it alternate representations, were
discussed in [5]. Note that Eshelby [7,39,40] names the terms in brackets
[ ] in (I.47) as the "energy-momentum tensor'. '
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(v) invariance under rotations of Xy
This 1is possible only when the (linear or nonlinear elastic) material
is isotropic. The balance law is:
3 )
= - { + — - T)o =
0 ikak[(pu fm)ym,i * ”umum,i] 3x <eijkxk[(w ) ip pm m, i]>
P (1.48a)

When the global angular momentum conservation law (I.46a) is used, the
conservation law corresponding to (I.48a) can be written as:
umum 1*K “uiuk]dv

0= eijk{ V*[(pum - fm)um,ixk + pl

+ T'*[(W = T)xkni +notow- nptpmum,ixk]ds} (1.48b)

where V* is the volume that is void of any singularities.

(vi) invariance under scale changes of xi,t[;(i = (1 + f)xi, Tt =00+ 9¢t]:
This is possible only when the material is linear. The

corresponding conservation law in linear elasto-dynamics is [37]:

(pe,.,uu, + pe, . x.uu_,)dv

d
vk dt ijk k j ijk"j m m,k

- J = I.49
* F*(eimjumojknk &, i 1% S 2 = O et

Now we consider the application of the conservation laws (I.47b) and
(I.48b) to nonlinear elasto—dynamic crack propagation. We consider a
volume Vp -V. which does not contain the crack-tip, where T is any path
enclosing the crack-tip, V¢ is a small volume with the boundary I'c also
enclosing the crack-tip; thus T+SCI—TE is the boundary of V-V:. Note that
the divergence theorem, in the presence of possible non-integrable
singularities, may be applied only in V-V in the limit as &70C. Based on
these arguments, further elaborated upon in [5], we obtain from (I. 47b) the
path—-independent integrals:

J, = Lt [(W-T)n, - t.u,  lds (1.50a)
ko fr k ii,k
£
d .
= Lt [(W-T)n, - t.,u, ,lds + < —(Pu,u, ,) - fu >dv
k j i,k . de j i,k m m,k
e fT+5 ., VrVe (1.50b)

Comparing (I.50a,b) with (I.20b and .22), it should be evident that Jy of
(1.50a) are not associated with the concept of an energy-release rate, but
rather (as the roots of their derivation would indicate) are associated
with the rate of change of Lagrangean L* of the system, due to unit
translation of the crack in the xj) direction [5]. That the equivalent
"energy-momentum tensor" in elasto-dynamics does not lead to an
energy-release rate was also noted by Eshelby [7]. Thus, the relevance of
(I.50a) as a 'fracture parameter' is vaccuous. Likewise, the integral of
(I.50b) in time, say,

Y = J,dt = Lt < [(w - T)nl e tjuj,llds>dt

t e Jt T+s
o o cT
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= ! < vy (fkuk’l)dv)dt + pa,u, dv| (I.51)

I e T "¢
has 1little relevance to fracture--it is the total change of Lagrangean from
t, to t. Eq. (I.51), in a slightly less general form, for the case of
infinitesimal deformation, along with the assumption of a rather special
set of constant body forces, i.e., fy # fy(xi) [which renders the volume
integral of fju 1 to be a surface integral of fkuknl], appears in a paper
by Ouyang [30]. ’

If one realizes the identity:

2Tn dS = 2Tn, ds - 2pu 0 dv (I.52)
r k r+s M vV v m m,k

£ cl I "€
and adds (I.52) to (I.50), one recovers the integrals J& of (I.20b and .22)
which are associated with the energy release rate, as was done originally

in [8].

Analogous to the way in which (I.50) is derived from (I.47b), we may derive
the following path-independent integrals from (I.48b):

Lj = eijk . [(w - T)xkni + not e T nptpmum,ixk]ds
€
= eijk{ - [(w - T)xkn1 + not YT nptpmum’ixk]ds
cl
+ v v [(pum - fm)um,ixk + pumum’ixk - puiuk]dv} (1.53)
I ¢

which would have the meaning of the rate of change of Lagrangean L per unit
rotation of the crack. In order to obtain an equivalent "energy-release"
interpretation, we may add the identity

B -
S;;(ZTeijkxk)dv - zeijkTanids = . 2eijkaknids (I.54)

V.-V r+r
s

' e
to (I.53) and obtain:

€

. -
Lj = eijk i [(w + T)xkni + nmtmiuk nptpmum,ixk]ds
£
= et R [0+ Do, + ope g = ot u, 5 1ds
cl
- [(pui - fm)um,ixk - meum,ixk - p“iuk]dV} (1.55)
€

Finally, we note that the so-called M-integral for linear elasto-dynamics
can be derived from (I.49).

Complementary Representation of Path-Independent Integrals
in (Nonlinear) Elasto-Dynamic Fracture

Here we define the complementary energy density (per unit initial volume)
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of the material, denoted here by W., through the contact (Legendre)
transformation,

wc(tij) = tij“j,i - W(uj’i) (I.56)

Evaluation of (I.56), however, involves finding the inverse of the
stress-strain relation,

tij = BW/Buj’i (1.57)

That the inverse of (I.57) is not unique is now well established [3, 4].
However, by defining the so-called 2nd Piola-Kirchhoff stress tensor,

Sij = tik(aleayk) (I.58)

we may define a 'valid' complementary energy:

wc(sij) = sijcij - w(cij) (I.59)

)

where Cij = (yk,iyk,j

Evaluation of (I.59) involves finding the inverse of

Sij = (SW/BCij) (1.60)

which is known to be unique [3,4], such that:

Cij = 8WC/BSij (I.61)

We now define a Lagrangean in terms of the complementary energy, wc, as:
t

L(sij’ui’ui'ui,j’xi’t) = . V*[Sijcij - wc(Sij) - T - Pldvdt (I.62)
o

By applying Noether's theorem, it is now possible to derive a variety of

conservation laws, and complementary path-independent integrals, from

(1.62). We omit further details, but refer for examples of these to

[42,43].

We conclude this section by noting that of the seemingly infinite varieties
of '"path-independent integrals" and attendant "conservation laws" possible
in nonlinear (or 1linear) elasto-dynamic crack propagation, only J' of
(I.16) and (I.22), and the equivalent J* of (I.25) have the property: (i)
they characterize an energy release rate due to crack propagation, (ii)
they are measurable, and (iii) they are measures of dynamic crack-tip
fields. In linear elasto-dynamic crack propagation, even though some of
the other "path-independent integrals", such as J of (I.31) and (I.33), and
Jg of (I.50a), do not have the same physical meaning as (J' and J*), they
may be related to the dynamic stress-intensity factors [k(t)]. Such

AFR VOL 1-H*
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relations, which are of course different from those between J' and k(t),
are given in [8].

INELASTIC (AND DYNAMIC) CRACK PROPAGATION

We first consider crack-growth initiation and stable growth, under
quasi-static conditions, in elastic-plastic materials. The most widely
used parameter so far, and the one that has made possible certain
impressive advances in elasto-plastic fracture has been the J integral. 1In
the context of incipient self-similar growth, wunder quasi-static
conditions, of a crack in an elastic material, J [which is equal to J' when
di and U, are set to zero in (I.16)] has the meaning of energy-release per
unit of crack extension. As in the case of J' of (I.1l6), the
path-independency of J, evaluated now only as a contour integral, can be
established when the strain energy density of the material is a
single-valued function of strain and the material 1is appropriately
homogeneous. In a deformation theory of plasticity, which is valid for
radial monotonic loading but precludes unloading (and thus is essentially
and mathematically equivalent to a nonlinear theory of elasticity), J still
characterizes the crack-tip fields. However, in this case J does not have
the meaning of an energy-release rate; it 1is simply the total
potential-energy difference between identical and identically
(monotonically) 1loaded cracked bodies which differ in crack lengths by a
differential amount. It should be emphasized that even this interpretation
of J under a deformation theory of plasticity is valid only up to the point
of crack growth initiation [43]. Moreover, in a flow theory of plasticity,
under arbitrary load histories, the path-independence of J, evaluated as a
contour integral, is no longer valid; and further, under these
circumstances, J does not have any physical meaning.

However, significant advances have been made, in the past decade, in the
problem of crack-growth initiation in monotonically 1loaded structures,
using the concept of J integral. The principal contributions that made
these possible may perhaps be identified, as: (i) the work of Hutchinson
[44] and Rice and Rosengren [45], who show that the stresses and strains
near the crack-tip in a monotonically loaded body of a power—law hardening
material, under yielding conditions varying from small-scale to fully
plastic, are controlled by J; (ii) the work of Begley and Landes [46] and
Rice et al. [47] on the measurement of J from small laboratory test
specimens; and (111) simple procedures for estimation of J, by
interpolating between fully-plastic solutions and elastic solutions, based
on the works of Bucci et al. [48], Shih and Hutchinson [49], and Rice et
al. [47]. On the other hand, a large amount of crack growth in a ductile
material is necessarily accompanied by a significant non-proportional
plastic deformation which invalidates the deformation theory of plasticity.
Thus, the validity of J, as a contour integral defined by Eshelby [40] and
Rice [50], 1is questionable under these circumstances. For limited amounts
of crack-growth, however, Hutchinson and Paris [51] argue that J is still a
controlling parameter. For such situations of J-controlled growth, Paris
et al. [52] introduced the concepts of a '"tearing modulus" and "J
resistance curve" to analyze the stability of such growth. Using the above
concepts and the related concepts of CTOA, engineering approaches to
elastic-plastic fracture analyses were elaborated upon by Kumar et al. [53]
and Kanninen et al. [54].

The mechanics of crack-growth initiation, and substantial amounts of stable
growth, in elastic-plastic materials subject to arbitrary load histories,
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is not yet understood. This state of affairs is due, in part, to the
reason cited by Rice [55] in 1968 that "... no success has been met in
attempts to formulate similar general results for incremental plasticity".

Among the first attempts to find a suitable parameter, that 1is
theoretically valid in elastic-plastic fracture mechanics, were those by
Bilby [56] and Miyamoto and Kageyama [57] who defined an integral:
e
Jowe = | N, - tigfi)ds (IT.1)
L

where W€ is the elastic - strain energy density, and B?- is the "elastic
distortion tensor'" such that the increments of elastic Aisplacements are
given by: dui = B%idxg. The integral (II.1l) is path-independent only for
paths on the region of the body that remains elastic, but is path dependent
for contours passing through the plastic region. Some studies on Jext were
presented by Miyamoto and Kageyama [57,58].

Also, from time to time, ideas of 'energy-balance' and 'energy-release
rates', similar to those in the previous section (Section 1), are presented
in the 1literature for elastic-plastic materials. However, such ideas of
'energy-release rate' are well known [59,60] to be unworkable for
elastic-plastic materials wherein stress saturates to a finite value at
large values of strain. In such materials, under quasi-static conditioms,
it has been shown [59,60,61] that the energy-release rate vanishes [i.e.,
the value (AU*/Aa) tends to zero when Aa + o, where AU* is the total change
in global energy due to crack growth by amount Aa]. Of course, the total
energy-release for a finite growth step Aa, denoted as G*“, remains finite
and depends on Aa [60,61]. It is this dependence on the size a that
precludes a rational utilization of the "energy-release" concept or the
generalization of the original Griffith energy balance concept ir
elastic-plastic fracture mechanics. Also, the derivation of integrals
that may characterize 'energy-release' even in finite growth steps along
the lines of those in  Section I are no longer possible in
elastoplasticity, since the solutions near the crack-tip at time t and at
time (t + At) (during which the crack grows by Aa) are no longer
self-similar--due to the elastic unloading that accompanies crack-growth.

On the other hand, the concept of two comparison cracked bodies of
identical geometry with crack lengths differing by a differential amount
(da), and being identically 1loaded, is useful in elasto-plastic fracture
mechanics. In that process, we abandon the concept of an energy-balance in
a single cracked body. Recall that J, in the context of a monotonically
loaded cracked body and up to the point of initiation of growth, is simply
the total potential energy difference between the cracked-body in question
and a comparison cracked-body of identical shape, but with a crack-length
differing by (da) from that of the first body, which 1is 1loaded
monotonically in an identical fashion.

To arrive at fracture criteria that may be theoretically valid in the
context of a flow theory of plasticity, studies [5,43] were recently aimed
at incremental (or rate) path-independent integral parameters corresponding
to an increment (or rate) of externally imposed boundary traction and/or an
increment of prescribed displacement. The incremental integral derived in
[5], say AT. or (T.) was used in some preliminary studies of creep crack
growth [62,63]. However, in (nonlinear) elasticity (and thus,
equivalently, in deformation theory of plasticity and monotonic loading),
it can be shown that (ZIAT.) (wherein the summation extends over all load
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increments from beginning to current state) 1is not equal to J. With
slight modifications to the work in [5], attention was later [43] focused
on incremental parameters, which under assumptions of nonlinear elasticity
(or deformation theory of plasticity) and when integrated over the load
path would be equal to J. Two such parameters are elaborately discussed in
[43]. One, denoted by ( ATS) is such that: (i) it is defined as a path
independent integral, (ii) it is a direct measure of the crack-tip fields
under a flow theory of plasticity, (iii) it 1is wvalid for arbitrary
loading/unloading histories, and (iv) under conditions of radial monotonic
loading when a deformation theory of plasticity may be valid, (SAT*) (with
the summation being over the load-path) is equal to J as defined by Eshelby
[40] and Rice [50]. The second parameter, (ATP) is such that: (i) it is
also defined as a path-independent integral, (ii) it is related to the
incremental total potential energy difference between identical and
identically loaded cracked bodies with slightly different crack lengths,
(iii) it is amenable to measurement on laboratory test specimens by
measuring certain strain/displacement data on the external boundary of the
specimen, (iv) it is valid for arbitrary loading/unloading histories and is
consistent with the use of an incremental flow theory of plasticity, (v) it
is such that it is equal to (AT*) plus another term involving a volume
integral (since this volume integril cannot, in general, be measured
directly on a laboratory test specimen, one may use a hybrid
numerical-experimental method to evaluate AT* from the measured AT_ ), and
finally, (vi) under conditions of radial monotonic loading, (ZAT ) is equal
to J as well as (ZAT*).

We employ a coordinate system as shown in Fig. 1 and consider all
deformations to be infinitesimal. let at time (or a time-like parameter)
T, the displacement, strain, and stress in the body be uj, €ij» and 04j,
respectively. During the time interval T and T + AT, let the increments in
displacement, strain, and stress be Aul, , and Aol , respectively. The
boundary value problem governing the increm%nts, in a“dynamic case, can be
stated as:

(compatibility): Aeij = %(Aui’j + Auj,i) in V (1L.2)
(constitutive law): Aoij = BAV/BAsij (I1.3)
(momentum balance): Aoij,j + Afi = Mui : Acij = Aoji (11.4)
(traction b.c.) Adijnj = Ati at St (I1.5)
(displacement b.c.) Aui = Aai at Su (I1.6)

In the context of a classical rate-independent plasticity, the
incremental potential AV for Adij may be written as:

Q. 2
AV = %mequmnAepq - (E)O‘klAekl) (I1.7)

where L. is a tensor of instantaneous elastic modulii, o = 1, or zero

according p%o whether (XklAekl ) 1is positive or negative; Apyp is a tensor
normal to the '"yield surface" in the stress space, and g is a scalar
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related to a measure of strain hardening. We note that & [which determines
whether the material particle under question 1is undergoing elastic
loading/unloading (& = o), or whether it is undergoing plastic loading
(oo =1)] as well as g are explicit functions of the coordinates xji; thus,
(AV) is an explicit function of xj.

We consider the strain-increments to be decomposed into_elastic and plastic
parts in the usual fashion, i.e., A€ij = Acij + A€7j. The incremental
stress working density, denoted as /AW, between times T and T + At is
written as:

= 1 o~ = p o
W (uij + zAUij)ALij JijAr + AV

i3

1 e P —- A€ P
(Oij * ZAGij)(AEij + A&ij) = AW+ MW (I1.8)

wherein the definitions of AWS and Awp are transparent. Note that MW is
now an explicit function of xji , in as much as AV and Uiy are explicit
functions of xj.

With the above background, under incremental flow theory of plasticity, the
incremental parameter (AT%), to serve as an incremental measure of the
strength of the crack-tip strain/stress fields, is defined [43] as:

* = - -
ATP ; [AWN1 (ti + Ati)Aui,l Atiui,llds (I1.9)

&

Eq. (II.9) assumes quasi-static conditions. Note also, as in Section I, N,
is the component of wunit normal to I'¢ along the crack-axis, X] (see Fig.
1).  Further, (II.9) is considered to be valid (i) under either loading or
unloading conditions at the global level as well as near the crack-tip and
(11) for either a stationary crack or for a crack growing stably in a
self-similar fashion (along X; ) 1in which case T'¢ is a 'small' loop that
traverses with the crack-tip.

It is now a simple matter to wuse the divergence theorem in the region
(Vp-V.) and derive an equivalent but "far-field integral" representation
for AT;, as [43]:

BAu Bu
*x = - - ——
ATS 45 [awN, = (rg + Ary)—5= ax 1 5% “1ds
T
de, . dAe, . 30, 3o
+ [0, Gt + 3 o) = pe, (ol + 4 3y 1av
vV _-v 139X, # 3%, 14 ax —x*— (I1.10)
r €

In deriving the 'volume integrands' in (II.10), the quasi-static momentum
balance conditions (sans Afj, as well as Auj) (II.4), and the fact that AW
explicitly depends on X; are used. In specific, it can be shown [43] that:

JAV ‘
ot = 3Ae, A -
5%, 'explicit = ° €348y 1 ~ AR, 4 (11.11)

The integral in (II.10) is path-independent in the sense that when
(r +s and (VF - VE) in (II.10) are replaced by r'* and V* (see Fig. 1),
the Eue of the integral 1is zero. Note that in the case of growing
cracks, I in (II.10) is a path fixed in space.
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In the case of nonlinear elasticity or a deformation theory of plasticity,
the volume integral in (II.10) can be shown [43] to vanish. Thus, the
single far-field contour integral of (II.10) also characterizes the
crack-tip fields as in (II.9). The motivation for the definition of (AT*)
as in (II1.9) 1is now clear. Under the conditions: (i) that only a radial
monotonic loading exists, for which a deformation theory of plasticity is
valid, and (ii) that the crack-tip is stationary, the quantity (ZAT%) [the
sum being taken over the load path] is equal to the well-known J. However,
the definitions as in (I1.9 and II.10) are in general valid for (1)
arbitrary loading/unloading histories, as well as (ii) stably growing
cracks.

Omitting further details of derivation and motivation, which are elaborated
in [43], we now introduce a second incremental path—-independent integral,

AT _, as:
P du, Bu, 30, 5 Bho,
o = S{ Ati(ax ! W) + nj(W+ 3 %, ) bu, }dS (11.12a)
BAui du,
= S{AWNI - (ti + Ati) 52;-—- i ii—}ds (11.12b)
= {WN, - (t, + At )?ﬁu—i - A a—ui)ds
F+SCF 1 1 i BXI 1. 8X1
& [Ae (ﬁi+ 3 0ig-i_i) - Ao (acij B % a—Aii)]dv (II.12¢)
yoy 1% X, 133X 0%,

r

In the above, S 1is the external surface of the body, including the crack
surface. AT can be easily shown [43] to be path-independent (i) for
arbitrary loading/unloading histories (ii) even when ' passes through
plastic zones, (1iii) for either stationary or stably growing cracks, in
which case I is considered to be a path fixed in space. It can be measured
directly using the definition as in (II.l2a or b) since these definitions
involve only quantities at the external surface of the cracked-body (test
specimen). However, in the case of monotonic 1loading of a stationary
crack, AT as defined in (II.12a) is the incremental (for an increment in
loading) ifference between the areas under the load-deformation curves for
two identical cracked bodies differing in lengths by (da). Thus, it is the
incremental total potential energy difference between two identical cracked
bodies with slightly different crack lengths, when both bodies are loaded
monotonically in an identical fashion. Thus, under conditions for validity
of a deformation theory, AT, = J. Note also for arbitrary
loading/unloading and with crack growth, the definition of as in
(II.12b) makes it formally identical to AJ (formally the incremeng of J)
evaluated also on the external boundary of the body. However, AJ is no
longer path-dependent under arbitrary conditions, while ATp as in (II.12¢c)
is strictly path-independent.

Comparing (II.10) and (II.1l2c¢), it is seen:
aoi_ aAoij ae.j
1 —
+ z ) Aoij(axl

BAElj
1j‘axl X, +3 y}dv (IT.13)

X

(AT ) = (AT*) + e
P P V-V,

0f course, once again, under a deformation theory of plasticity (II.13)
simplifies to @ AT, = ATE. However, in arbitrary flow theory of
plasticity -and/or with crack- growth, the crack-tip parameter ATg differs
from the (measurable) global parameter (ATp) by a volume integral. Thus, a
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hybrid numerical-experimental procedure may be necessary to determine ATX
as a material property. The complementary representations of AT* and AT
can easily be found [43] to be:

3W.j BAcl] JAnl
*) = < if L
(\T*) . [< ‘chNl + njg)xl 5 )Au BX uy lds
- Doy, 3oy m;ij
= [-AW N + n, G + )Au + o, 5
4 c'l j er V3Xl j X1 Y11ds
cl
aﬁij GA&ii Snij Ao, ATy
+ o, .G+ - =) - Ae, . ( + =—=—)]dv (IT1.14)
¢ C 3 ]
v —v iJc§X1 )Xl ij X1 X1
I '€
where /AW, = ¢jjA0j5 + 3A€;3A0 ;. The representation for AT, is analogous;

except that the inCegral over . 1is replaced by that over the external
surface S, and that over Vi-V_. is replaced by the negative of the one over
V=vp, with the integrands remaining the same.

Finally, we present the dynamic counterparts of AT% and ATp can be derived
[43] to be:

3Aui ﬁU‘.l
AT* = - —— —L
'rp . [(AW + AT)Nl (ci + Ati) 8x1 Ati dxllds
£ DAui Bui
= A - e A _ 1
: [(Aw + AT)N1 (ti + Ati) X Ati X 1ds
+S r 1 !
£ Bgij DAeij Doij DAoii
1 1 o
* oG+ Tax. 0~ 853Gk * #ax, )
VT—VE 1 1 1 1
BAui UAU Sui Bﬁi
. . ) _ « : _ g ] II.
% Wuy # S 5% Kby + bag) g+ obuy 5X, dhay Bxlld" aEiee

It can easily be shown [43] that, in the case of elastic materials, the
summation of AT* of (II.15) over the time history, is equal to J' of
(1.16). Also A% p(ay + 3AGj)AG;. The representation for (AT;) in the
dynamic case 1is analogous to that in (II.15), except that, while keeping
the respective integrands the same, the integral over [ is replaced by
that over the external boundary S, and the one over VF-V€ is replaced by
the negative of that over V-Vp.

We present now some applications of the J', AT* and ATP integrals in
elastic and elasto-plastic dynamic fracture mechanics.

APPLICATIONS TO ELASTIC-PLASTIC DYNAMIC FRACTURE

We consider the problem of a center-cracked specimen subject to a uniaxial
tensile pulse of the Heavyside step—function type, as illustrated in Fig.
3, wherein the properties of the material, modeled herein as being
elastic-perfectly-plastic, are also indicated. The problem is analyzed for
three values of the ratio of applied stress (0,) to the yield stress (Oys):
(o /O = 0.0; 0.25; 0.5. Thus, the first case corresponds to linear
elastycity. The symmetry of geometry and loading allow one to analyze only
a quarter of the specimen, which is modelled by finite elements as shown in
Fig. 4. Results are presented here only for the case of a stationary crack
for space reasons; while those for a propagating crack are to be included
in the presentation at ICF6. The computed shapes of plastic zones at
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various instants of time are shown in Figs. 5 and 6 for the cases (0,/04g)
= 0.25 and 0.5, respectively. The crack-surface deformation profiles for
the cases (oo/oys) = 0.0 and 0.5 are shown in Fig. 7 and 8, respectively.
The values of TAT%X = IAT (crack-tip), at various instants of time, and for
various paths are shown, normalized w.r.t. the static J value, for the case
( 0o/ oys) = 0 in Fig. 9, while similar results are shown for the case
(0o/oys) = 0.5 in Fig. 10. These results indicate the relative
path-independence of the computed ATg values both in elastic as well as
elastic-plastic cases. The variation of computed ki <which is evaluated
from IAT%X for the elastic case, using the relation between k1 and J' = IAT*
for the elastic case given in [8]> with time for the case (0y/0,4) = 0 is
shown in Fig. 11; this result agrees with the analytical result of Baker
[64]. The nomenclature (Dy), (DD.), etc. indicate the time of arrival of
various waves at the crack-tip, as explained in [65]. The variation of
YAT% for the elastic case, (05/0,g) = 0, can be seen to be linear in time
from Fig. 12. The variations w.r.t time of IAT*, for the elastic-plastic
cases, (0p/0yg) = 0.25 and 0.5, respectively, are’'shown in Figs. 13 and 14,
from which it can be seen that the strength of the crack-tip field, i.e.
IATH, is lower than that in the elastic case. On the other hand, the
variations of the global parameter (ZAT,) for the cases (0o/0yg) = 0 and
0.5 are shown in Fig. 15. The variations of the crack-opening stretch with
time for the three cases, (UO/OYS) = 0, 0.25, and 0.5, are shown in Fig.
16. From Fig. 17 it can be seen that J' = ( ZAT;), in 1linear
elasto—dynamics, varies quadratically w.r.t the crack-opening stretch;
while Fig. 18 shows that in the elastic-plastic case, (0,/o0 g) = 0.5, the
crack-tip parameter FAT* varies linearly w.r.t §. This is interesting and
analogous to the well-known result in quasi-static case, viz., the J
integral is 1linearly proportional to the crack-opening stretch [66]. The
above results serve to illustrate the validity of ATﬁ as a crack-tip
parameter. Its use as a fracture parameter requires further validation,
and additional results concerning this are currently being generated.

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation under Grant
MEA-8306359, ONR under Contract NO0014-78-C-0636, and by NASA under
Contract NAG 346. These supports are gratefully acknowledged. The
assistance of Ms. J. Webb in the preparation of this manuscript is
sincerely appreciated.

REFERENCES

[1] Rice, J. R., "The Mechanics of Fracture", (Ed. F. Erdogan),
ASME-AMD Vol. 19, (1976), 23.

[2] Bilby, B. A., "Fracture 1977", (Ed. D. M. R. Taplin) University
of Waterloo Press, Canada, IV , (1977), 1.

[3] Truesdell, C. and Noll, W., "The Nonlinear Field Theories of
Mechanics", Handbuch der Physik III/3, Springer, Berlin, (1965).

[4] Atluri, S. N., Computers and Structures, 18 , (1984), 93.

[51] Atluri, S. N., Engineering Fracture Mechanics, 16 , (1982), 341.

[6] Atkinson, C. and Eshelby, J. D., Int. J. Fract. Mech., 4 , (1968), 3.

[7] Eshelby, J. bD., "Inelastic Behavior of Solids", (Ed. M. F.
Kanninen, et al.), McGraw-Hill, New York, (1970), 77.

[8] Nishioka, T. and Atluri, S. N., Engineering Fracture Mechanics, 18
(1983), 1.

[9] Nishioka, T. and Atluri, S. N., "Dynamic Crack Propagation Analysis

T

——

[20]
[21]
[22]
(23]

[24]
[25]

[26]
[27]

[28]
[29]

[30]
[31]

[32]
[33]
[34]

[37]
[38]
[39]
[40]

[41]
[42]

203

Using a New Path-Independent Integral and Moving Isoparametric
Elements", AIAA Journal, (In Press), (1983).

Nishioka, T. and Atluri, S. N., "On the Computation of Mixed-Mode
K-Factors for a Dynamically Propagating Crack, Using Path-Independent
Integrals J'", Engineering Fracture Mechanics, (In Press).

Budiansky, B. and Rice, J. R., J. Appl. Mech., 40 , (1973), 201.

Herrmann, A-G. and Herrmann, G., J. Appl. Mech., 48 , (1981), 525.
Atluri, S. N. and Nishioka, T., "Path-Independent Integrals in Dynamic
Fracture", Proc. Workshop on Dynamic Fracture, Caltech, Pasadena,
16-17 February 1983, (In Press).

Kishimoto, K., Aoki, S., and Sakata, M., Engineering
Mechanics, 13 , (1980), 84l.

Strifors, H., Int. J. Solids Structures, 10 , (1974), 1389.
Carlsson, A. J., "Prospects of Fracture Mechanics", (Ed. G. C.
Sih et al.), Noordhoff Int., Leyden, (1974), 139.

Freund, L. B., J. of Elasticity, 4 , (1972), 341.

Sih, G. €., Inelastic Behavior of Solids, (Eds. M. F. Kanninen,
et al.), McGraw-Hill, (1970), 607.

Atluri, S. N. and Nishioka, T., "Energy-Release Rates in Dynamic
Fracture: Path Invariant Integrals and Some Computational Studies",
Proc. 1Int. Conf. on Fract. Mech. Applied to Mat. Evaluation and
Structure Design, Melbourne, Australia, (1982).

Nishioka, T. and Atluri, S. N., Engineering Fracture Mechanics, 17 ,
(1983), 23. -
Bui, H. D., "Fracture 1977", (Ed. D. M. R. Taplin), University of
Waterloo Press, Canada, II1, (1977), 91.

Bui, H. D. and Erlacher, A., In: "Fracture 1981, ICF5",
Francois), 2 , (1981), 533.

Erlacher, A., "Fracture 1981,
(1981), 2187.

Irwin, G. R., J. Appl. Mech., 24 (1957), 361.

Erdogan, F., "Fracture II", (Ed. H. Liebowitz), Academic Press,
(1968), 498,
Gurtin, M. E.
(1980), 231.
Achenbach, J. D.,
Pergamon, (1972), 1.

Yatomi, C., Int. J. Fracture, 18 , (1982), 233.

Kishimoto, K., Aoki, S., and Sakata, M., Engg. Fract. Mech., 13
(1981), 387. -
Ouyang, C., Int. J. Nonlinear Mech., 18 , (1983), 79.

Aoki, S., Kishimoto, K., and Sakata, M., J. Appl. Mech., 48 ,(1981),
825.

Nilsson, F., Int. J. Solids Structures, 9, (1973), 1l107.

Gurtin, M. E., Int. J. Fracture, 12 , (1976), R643.

Noether, E., Gottinger Nachrichten (Math.-Phys. Klasse), (1918), 235,
(English Transl. by M. A. Tavel), Transport Theory and Statistical
Physies, 1 , (1971), 183.

Gunther, W., Abh. braunsch. wisch. Ges., 14 , (1962), S4.

Knowles, J. K. and Sternberg, E., Arch. Rat. Mech. Analy., 44
(1972), 187. -
Fletcher, D. C., Arch. Rat. Mech. Analy., 60 , (1976), 329.
Golebiewska-Herrmann, A., Int. J. Solids Structures, 17 , (1981), 1.
Eshelby, J. D., Phil. Trans., A244 , (1951), 81.

Eshelby, J. D., Solid State Physics, 3 , Academic Press, (1951),
79.

Golebiewska-Herrmann, A., Int. J. Solids Struct., 18 , (1982), 319.
Bui, H. D., Engineering Fracture Mech., 6 , (1974), 257.

Fracture

(Ed. D.

ICF5", (Ed. D. Francois), 5,

and Yatomi, C., Arch. for Rat. Mech. and Analy., 74

»

Mechanics Today, Vol. 1, (Ed. S. Nemat—-Nasser),

»



205

Atluri, S. N., Nishioka, T., and Nakagaki, M., '"Incremental
Path-Independent Integrals in Inelastic and Dynamic Fracture
Mechanics", Rept. GIT-CACM-SNA-83-27, Georgia Tech, May 1983, 82 i
pages. Also Engineering Fracture Mechanics, (In Press). oy
Hutchinson, J. W., J. Mech. Phys. Solids, 35 , (1968), 13. :
Rice, J.R. and Rosengren, G.F., J. Mech. Phys. Solids, 16, (1968), 1.

o

Begley, J. A. and Landes, J. D., "Fracture Toughness', ASTM STP

514, (1972), 1. 5 5

Rice, J. R., Paris, P. C., and Merkle, J. G., "Progress in Flaw ’/‘lﬁ;’&fg/ =
& -

Growth and Fracture Toughness Testing'", ASTM STP 536, (1973), 231.
Bucci, R. J., Paris, P. C., Landes, J. D., and Rice, J. R.,

o
s

i
t

‘;-i‘*" -
LIS =

"Fracture Toughness', ASTM STP 514, (1972), 40. - ceee- [T o
Shih, C. F. and Hutchinson, J. W., J. Eng. Mat. and Tech., 98 , ’ = o
(1976), 289. = 3
Rice, J. R., J. Appl. Mech., 35 , (1968), 376. - =
Hutchinson, J. W. and Paris, P. C., "Elastic-Plastic Fracture",
ASTM STP 668, (1979), 57.
Paris, P. C. and Zahalak, G. I., "Nonlinear and Dynamic Fracture i o ~
Mechanics", (Eds. N. Perrone and S. N. Atluri), ASME, (1979), 125. 3 o, Ay S
Kumar, V. German, M. D., and Shih, C. F., EPRI-NP-1931, Electric Power
Research Institute, Palo Alto, California, (1981). :
Kanninen, M. F., et al., EPRI NP-1734, Electric Power Research 1
Institute, Palo Alto, California, (1981).
Rice, J. R., "Fracture, Vol. II", (Ed. H. Liebowitz), Acadmic
Press, (1968), 213.
Bilby, B. A., ICF3, Munich, Part XI, (1973), 1.
Miyamoto, H. and Kageyama, K., "Proc. Int. Conf. Num. Meth. 5
Fract. Mech.", Swansea, (1978), 479. R
Miyamoto, H. and Kageyama, K., "Recent Research on Mechanical N
Behavior of Solids'", University of Tokyo Press, (1979), 229. 3
Rice, J. R., "Proc. Ist. Int. Congress on Fracture'", Sendai, (Ed. S
T. Yokobori, et al.), 1 , (1966), 309. R
Nakagaki, M., Chen, W. H., and Atluri, S. N., "Elastic-Plastic
Fracture", ASTM STP 668, (1979), 195. N
Kfouri, A. P. and Rice, J. R., "Fracture 1977", (Ed. D. M. R. - E "
Taplin), University of Waterloo Press, (1977), 43. - L ® s
Stonesifer, R. B. and Atluri, S. N., Engineering Fracture Mechanics, L -3
16 , (1982), 625. S3% 06 -
Stonesifer, R. B. and Atluri, S. N., Engineering Fracture Mechanics, S g% ‘f’ @
16 , (1982), 769. 338 oy 2
Baker, B. R., J. Appl. Mech., 29 , (1962), 449. : R o
Nishioka, T. and Atluri, S. N., J. Appl. Mech., 47 , (1980), 577. S 3 3 oF
Atluri, S. N., Nakagaki, M., and Chen, W. H., Press. Vessel Tech. N
Part II (Proc. III ICPVT, Tokyo), ASME, New York, (1977), 579. = = S
s & <
4 % g %
;m
XF?
=3 -
=
4

i
3



207

1T @2an31y

(SN

o s

RLETTL ZVINY

VI v deCae) —

P
(«q=) A= ET
(2i8v73)

0
oo
el oy
mrl g
o'l
I
S
FD vl g
Ug
B
seurl g1
oz
o%
8 @an3tj
Cwwl'y

[we)?n

- 8
so- 2%

9 2an31g

0T @anf1yg

ON Hivg

l\#me
-y 7

EOETS

m e

6 2an814
ON Hivg
v < z '
™
vy o——o0——o——9
o1
9 "
20
W LK ] Oo——o0——a
9
oz % Loz
2 |
3
N mrg e—a .
e 1 ox
m
>
4
o or
iy gl O
o]
oS o%
i
"als 3) =, _
09 Nq WiSVT) = 109
(usvy) 0. D4
[ 21n31y4
Cww) 'x
<
7
L
(21sv13) 0 .Jo\uo 800
t 2an81g
iy
v € 2 | ONHivd
wwo? . ™
o wwzg
€ 2an3y
i '
D,
50 .
(Xi§¥ 0015V 1) * 1\6

0
mwo...\.b. 2
) —

(usn3) 00 /oy e

(Lo}

JERERERE

0H

oaw 2151+%0
9820+
w/bw oGp2e d

0d9 29643

LTI

ny

sy =/ (a1 xowo) 197



5 209

208 ¢
|
q, . 1 .
02/0— .0 EiasTic) '/U_ 0:23 ! u,‘l
n . ;
(OmRe) (Bine) -
A « %70
(Omsc) | . £
(O L 2at (57 . 4
60 5 St atx =il Smm
(Om0 6o (OmOm) > -~
¥ |
. 1 .
50 | 2
a0 5. ELASTIC - -
— THeoReTicAL ‘PELASTORLASTIC = ‘ o
; a5 ® NUMERICAL . wl | ,..
5 0 (Omix) . | -
o B 7 wt -~
- 5 i 3
30 3 1 .
¥ 5 o 4 [ ]
\\ - ’ .l
0 P S——
20 o ’ 3 2 ps e
3 20 o
S »
S w -’
(om e K
10 ol o (Dm De)
l .
.
s 4 oo
o8 6 3 10 2 @ 2 a
o 2 4 5 2 . 6 8 0 2
"
1 Cusec] v Ciinecd (Om)
i R
i 1 .
Figure 12 Figure 13 ®
H a2 T -
0 < 4 6 8 10 2
$ iCisee]
t
Figure 16
g/ 05
# 0,
(D Re)
62 & G0
” 5
&0 (D,..Dm‘ O;/O'; 0.5
30
20 =
N g
50 ;- Euastc 5 . ) w 2
S Z )
ERYY . <
. o N 2 O
EpS ELASTOR ASTKC K o (T4 )= (v T 0
b N N ¥ % (14T/32)= 0/89
a 5 ]
= 7w H
s i S
\h\ 30 3 5 20
"
i~ =
i 20
E :1‘ 20
r,
5 20 1O
& 0
] 1.0
a
w
o
10 20 10 40
0o ﬂv o 0 20 0 L
) .4 » 6 8 o 12
ao B/&.
[ 2 1z 1t Cpavec )
! [pee] A P
Figure 17 Figure 18
Figure 15 |

Figure 14



