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ABSTRACT

Following a brief general review of developments in dynamic fracture, four problem
areas in this discipline are examined: Crack initiation under stress wave loading,.
crack propagation, branching, and arrest. These topics are discussed from the
viewpoint of understanding the physical fracture process at the tip of dynamically
loaded cracks. Time scales, other than those governed by the elastic wave speeds, are
important in connection with dynamic fracture. These time scale differences are con-
nected with the establishing of the process zone which consists of an ensemble of
micro cracks. Direct evidence of these micro cracks is reviewed as well as the impor-
tance of strain rate history effects in dynamic fracture.
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INTRODUCTION

Following the development of the wave character of light, wave motion in solids has
been studied as early as 160 years ago by Navier and Poisson. However, it was not
until the early 1870’s that John Hopkinson (1872) investigated the strength behavior
of iron in wire form under high rates of loading through drop weight experiments.
Taking into account the generation and reflections of stress waves, he found that the
wire could withstand stress pulses without yielding, that were substantially greater
than the static yield stress. In a somewhat more detailed analysis, based on tests by
Bertram Hopkinson, John Hopkinson's son, G.I. Taylor (1948) calculated (much later)
“is stressto be on the order of 1.5 to 1.7 times the yield stress for a duration of
about 100 usec. Today, we accept almost routinely the fact that under high rates of
loading materials respond with stress levels significantly above those encountered in
static loading situations.

A BRIEF REVIEW OF THE "STATE OF THE ART"

Since John Hopkinson’s work and his son’s Bertram Hopkinson there seems to have
been little work done on the effect of wave action on fracture - other than the pursuit
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1o summarize
dynamic crack propagation, we are a
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1983).

understood, although efforts are under way to clarify that situation (Freund,

I'or cracks bifurcating dynamically in the infinite domain information is becoming
available in the form of solutions for kinking or bifurcaling cracks in Mode-l]
(Burgers, 1982; Burgers and Dempsey 1982 Dempsey, Kuo, and Achenbach, 1982,
Freund, 1975) and for dynamic crack kinking in plane strain (Burgers ,1983). How-
ever, there is, as yet no analytical solution that parallels
able situation of inplane bifurcating crack paths. In addition, all these analyses
suffer from the uncertainly regarding the physical conditions that lead Lo branching,
so that the proper modelling for bifurcating cracks is still a cloudy issue. Recent
experimental findings on this topic, discussed subsequently, offer a situation that
does not appear amenable to attack in detail by the methods of "closed form' sclu-
tions in linear elasticity. The finite element method seems to hold considerable prom-
ise in principle. However, the expense associated with high resolution and
accuracy/reliability of detail in the domain very near crack tip is still a major read-
block to routine application of this numerical tool. For non-linear (plasticity) prob-
lems, it is even more necessary to provide the flexibility offered by numerical tech-
niques to attack the real problems posed by the experimentalist in an effort to under-
stand the processes that determine crack growth and branching phenomena.
Although 'closed form' analyses for elastic-ideally plastic behavior will fill a gap for
some time, there is fertile ground for the scie Ltific entrepreneur to cope with the
economics of the predictive power of finite elernent analysis applied to dynamic crack

the experimentally achlev-

propagation problems.

Ezperimental Tools
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mm?. Because of the duration of elastic sparks (Cranz-Schardin camera) or the limi-

tations on spatial resolution, framing rate, etc., the events occurring within a radiu
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While arranging the following discussion in this way it should be recognized that the
intent in this exposition is a review of the more 'fundamental” aspect of dynamic
fracture processes. The motivation for these studies derive from diverse engineering
problems of serious concern which relate to the need for both fracture prevention as
well as fracture promotion.

In the latter category we find the problems of comminution: these are of interest in
the pharmaceutical and in the chemical engineering industry where generating small
particles in an energy efficient way is important. On the macroscopic scale the tech-
nology of developing cracks and 'porosity” in geological formations for improving
recovery of oil, natural gas or thermal energy draws on the results of dynamic frac-

ture research.

In the more preventive vein of designing against dynamic fracture the need exists to
understand the propagation of cracks in pressurized gas pipe lines as well as their
behavior in structures such as ships or large rocket motors. There, as in pressure
vessels for nuclear reactors, both the conditions leading to crack initiation, growth
and arrest need to be understood in order to minimize risks. In addition to these typ-
ical crack propagation problems those connected with projectile penetration of rock
or metal targets are important. Moreover, there are many situations where post mor-
Lem evaluation of an accomplished failure is important in analyzing the source and
process of a failure in an engineering structure in order to prevent a failure
recurrence through design improvements. In these latter cases the fractography of
dynamically generated fracture surfaces is of prime importance.

It is clear that such a broad range of problems generates an equally broad spectrum
of needs and questions. For convenience of discussion purposes, these may be divided
into design oriented needs on the one hand, and understanding of basic phenomena
on the other, even though all serve to enhance our ability to cope more effectively
with the problems of prevention or promotion of (dynamic) fracture.

For design purposes it may be necessary to draw on limited available information
which serves to construct relatively simple theoretical concepts. Such situations
arise often in connection with engineering analyses. Simultaneously one needs to
develop additional knowledge on a somewhat short term basis {(advancing engineering
concepts), yet fully recognizing that a still more satisfactory resolution of important
questions must await answers from long range research which are geared to clarify
the fundamental phenomena. Within this spectrum of concern with detail and investi-
gative sophistication this presentation is structured to emphasize the more funda-
mental aspects of dynamic fracture rather than those of immediate engineering con-
cern, although the awareness of the latters’ importance is clearly the driving force

behind the following discussions.

INITIATION RESULTING FROM STRESS WAVE LOADING

In most investigations to date loading on test geometries is accomplished in one of
basically two ways: By applying the load suddenly to a geometry containing a sharp
preformed crack or by statically loading a geometry containing a blunt crack-like
discontinuity which is suddenly externally sharpened by an impacting device. Both
methods are basically mechanical devices for which timing precision is in the msec
range while the ensuing crack propagation phenomenon falls in the psec or tens of
usec range: It is impossible to study the onset of crack growth under such a time-
imprecise initiation mechanism with cameras geared to framing rates on the order of
10° to 108 frames per second with only a small number of exposures. Rather recently,
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finite size of lhe damage zone associated with any crack tip fracture process or

through the rate dependence of material behavior per se.

Tbat a minimum time should be invoved in Teal fracture processes may be seen from
su’npl; considerations. A finite time is always required to attain a stress ox:er ‘
sufficiently large domain in the crack tip area for frature to occur. If one conside:‘
tl_'lat for a large crack (no interaction of the two crack tips) the stresses at the thk
rises under step pressure p, according to oggz ~ Po(t/4)”% then achieving a criticlll
stress 0,3 = 0, out to a distance x = arequires P, ~ t %, provided « < < tcg with ¢ th
shear wave velocity. For Homalite 100 cg is close to 1 mm/usec. Thus, if fx =0 1smmA
times larger than 1 usec would qualify. By this argument fracture coluld start. if thf;

stress int nsity factor attains a critical valu if exce }
'e- e e and 1 the time xc
- v eds such «

In fact matters are not quite so simple. In Fig. 4 are shown res r initia-
tion‘(Ravi—Chandar and Knauss 1982a) wk%ich indicate thatulttshfeo‘sg:scstuirrftlergstiltaw
required for the beginning of crack growth in Homalite 100 rises sharply for tlmei‘
less than 50 wsec, which is large compared to the earlier estimale. Thus—conqider*;
tions other than merely elastic wave propagation must be important. Anoth;r estc"‘f
m?lte for theucr("lack initiation time can be made in terms of a (quasi-static) viscoelast;»
cally controlled crack opening displace i i i
e Eom- g placement (Smith). If one assumes a viscoelastic
pliance, i.e. D(t) = D,t" (Ravi-
Chandar and Knauss 1982a)
and denotes by Kj¢, the stress
intensity factor for quasi-
statically induced crack pro-
pagation and c¢ ,some con-
stant,then the initiation time
is given by

1.Or

(MPa-\V'm)

C
Keonst = Kic + o (1)

Upon replotting the data in
Fig. 4 as in Fig. 5 on a log-log
basis, one finds that a value
of r = 2 fits the data quite
well although this value is
large for linearly viscoelastic
behavior; of course, one 0 |IO
would not expect such linear Y
material behavior to apply in
this situation anyway.

Stress Intensity Factor
e)
8)
o

200

Time To Fracture(us)

Fig 4. Varia}tion of the stress intensity factor
;‘equlred for initiation with the time tc
racture. (Ravi-Chandar and Knauss
1982b.) o

From these simple considera-
tions one deduces thal the
time scale of fracture initia-
tion ?.S not princip‘ally governed by the time required to establish an elastic stress
field in tbe diffraction process but by a larger time scale commensurale with 'viscous”
effects. To say whether the latter is of a material intrinsic nature (viscoplasticity) or
of the type encountered through the crack nucleation by Seaman, Shockey, and
Curran (1973) in the formation of the crack tip damage zone would be specu]a'tive at
this time.

It is also well to remember that if crack tip
displacements are involved in allowing
~rack initiation to occur (COD) that the
time history is not the same as for the
stress intensity factor (Thau and Lu,
1971), displacements being approximately
proportional for short times to the first
power of time while the stress intensity
orows as t%. However, the timescale for
cslablishing the elastic displacement field
s on the same order as that for the stress
fleld so that consideration of displace-
ments rather than stresses will hardly
account for the large time discrepancy
mentioned.

CONTINUOUS CRACK
PROPAGATION

In this section we discuss problems of
crack propagation after the initiation
phase but before possible branching
occurs. We discuss first the effect of crack
initiation on the stress intensity field when
the crack begins to run.

633

Slope=-2

]
1.5 2.0

log
Logarithmic plot of Lhe data in
Fig. 4. (K is the quasi-static
critical stress intensity factor
and tg is the time at fracture ini-
tiation. (From Ravi-Chandar and

Knauss, 1982b.)

It is commonly accepted that the stress intensity factor determines crack growth
behavior and that the associated "singular' stress field is well established, ie., it

extends to a distance from the crack tip the
static stress analyses. This consideration is
ered at the crack tip over a wide domain suc
on the order of cm). When transient conditions arise such a

and usually is not, valid.

size of which is usually gaged in terms of
very important when information is gath-
h as in the photoelastic method (domain

n assumption may not be,

Inasmuch as the stress relief during crack initiation constitutes a highly transient
event, the question arises as to how long a time span is required after initiation
before the 'singular” stress field at the moving crack tip extends over a reasonably

sized domain. Following the absence of a stre
ments on crack initiation and propagation at hig
Knauss 1983) Freund has computed the time sca
field (Freund 1983). Of the two examples presented to date, le

these here.

ss drop after initiation in recent experi-
h stress rates (Ravi-Chandar and
le for establishing the singularity

t us consider one of

A semi-infinite crack in an infinite plane is subjected to a uniform pressure step load-
ing at time t=0. At a time to later the crack begins to grow with constant speed v. The

pressure continues to act only over the originally pressur
follow the crack tip. Drawing on earlier results
fixed distance @ ahead of the moving crack tip is examin
normal stress Sgzz on the crack axis. That stress should be le

(Freund,

ized surfaces and does not
1973), the stress at some
ed by calculating the crack-

attained after the initiation transients have died out and steady crack propagation

conditions have been achieved.

Let the steady stress fleld (stress at x = B ahead of
Ssp = K(t)(Zﬂ'ﬁ)_*. Using properties and measuremen

the tip) be characterized by

ts for Homalite 100, and for

t, = 50 usec Freund computes the ratio Sga(B.t) - (2mB)¥% /K(t) as shown in Fig. 8. One

ss than the value
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crack. During this time th
crack has moved on
order of 30
respectivel

high ead
time resolution is fairly stan-
dard in the 3 to 10 wusec

range, it is clear that these
times are surprisingly large.}
In fact, in small specimens a

substantial portion of the
crack propagation histery

can be taken up before a

"steady” crack propagation
stress fleld is established,
especially if  photoelastic

data is involved.

For metals this time scale
would be shorter because of
the higher wave speeds.
However, since reflections of
waves at the boundaries give
rise to transients at the
crack tip, small specimens
may inherently lead to
uncertainties in measured
stress intensities (even metal
specimens). There may still
exist a problem even in the
event that caustics are used
which gather information
from a much smaller domain
about the crack tip than the
photoelastic method because
(cf. Figure 8) for § = 2 mm
(radius of initial curve for a
caustic) a time of about 30

usec is required to achieve
Q0% of the slress intensily

field 2 mm ahead of the run-
ning crack. Thus much more
careful data anal
ry than has b

ysis is

mindful of these uncertainties.
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: n practiced in the past, but the details in terms of Freund’'s
is need vet to be worked out. In discussing the following findings we necd lo b(:
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Crack Speed and the Stress Intensity Factor

Perhaps the (experimental) observation which has dominated most of the thinking on
dynamic fracture during the last decade or two is that cracks tend to propagate at
different speeds depending on the stress intensity factor. This observation has been
made both on polymers (Homalite 100, Araldite, PMMA) (Dally, 1979; Kalthoff, 1983;
K althoff, Beinert and Winkler, 1977; Kobayashi and Mall, (1978); Kalthoff and associ-
ates, 1980) and on metals (Kanazawa and co-workers, 1981; Rosakis, Duffy. and
i'reund, 1983; Shockey and cclleagues, 1983). It is generally recognized that cracks
propagate at 'maximal speeds” which are a fraction of the Rayleigh surface wave
speed (about one half or less of it) provided the stress intensity is high enough and
branching does not occur. For stress intensities below that which causes "'maximal”
speed, the crack propagates more slowly, such that at stress intensities near the
lower limit for propagation the crack velocity changes drastically with small changes

in stress intensity (cf. Fig. 7).

Usually, the experimental
scatter in  delermining
either the crack tip stress
state or the wvelocity Iis
sizeable so that it is not
casy to establish a definite =
relation between the 020r
stress intensity factor and
the velocity. Although
different test geometries
and load histories tend to
produce different func-
tional relations between
the stress intensity factor
and the velocity (see e.g.

T T

T.Kobayashi and Dally -

Crack Velocity, ¢/c,
@)
/&)

Fig. 7 based on data -
reported by KalthofT xy
(1983)) there are support- 0.05+ * . 1
ers for the idea thal the A
"X-

velocity is a unique func-
tion of the instantaneous

1

i
stress intensity factor O 1O 20 30
(Dally 1979; Dally and : . :
Shukla, 1979: Irwin and Dynamic Fracture Toughness,Kip /i

co-authors, 1979; T.

Kobayashi and Dally, 1977) Fig. 8. Smoothed-crack-velocity vs. dynamic-fracture-
and those who have con- toughness relations of single-edged-notch
sistently questioned the Homalite-100 plates. (Extracted from

generality of such a rela- Kobayashi and Mall, 1978.)

tion (Kalthoff, 1983; A
Kobayashi, 1983). The
doubt stems from a systematic, though small, difference between such relations that
result from different types of test specimen geometries while the support comes from
the uncertainty of the whole data set due to the data scatter - as well as a hope that
mother nature favors a simple state of affairs so that we mortals can "understand

easily.”

The proposition that the instantaneous stress intensity factor produces a unique
value of crack propagation has been established by analytical and experimental
means only for a viscoelastic material in the absence of any dynarnic effects (Knauss,
1973: Mueller and Knauss, 1971). But even here, such a unique relation exists only in



{he absence of “strong transient” loading (Knauss, 1978), so that there exists n«
universal or unique relation between the instantaneous rate of crack growth and the

instaontaneous stress
intensity factor for this
particular class of time
dependent materials.

Returning now to the
elasto-dynamic problem,
the lack of certainty about
or applicability of a unique
K-v relation, as it is often
called, is accentuated by a
paucity of data on a
variety of materials. It
might well be that for
some materials such a
relation may be more rea-
sonable than for others.

However wuncertain the
proposition may be that
there exist a material
function between the
stress intensity factor and
the instantaneous velocity
there is something to be
learned from these K-v
curves. They have been
obtained for several clear
polymers as well as for
structural steels: As is evi-
dent from Fig. 7 to 11, the
general behavior is very
similar, including the fact
that the "mazimal"” speed
is on the order of 1/2 or
less of the Rayleigh
surface wave speed. One
would argue, therefore,
that the basic physical
processes that control
fracture in all these
materials are essentially
the same or at least very
similar. Moreover, this
observation is a strong
motivation for investigat-
ing some dynamic fracture
problems with simulation
materials such as optically
clear, brittle polymers
which are more con-
venient to use in the
laboratory than engineer-
ing metals.
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workers had noted that cracks
tend to travel at a constant
speed. He also observed that
under static far field loading,
cracks would accelerate - in his
experiments over an interval on
the order of 15-20 usec - but
that with increased applied /
stress the length of this ¢
acceleration phase decreased g:f

}

1000

Crack Speed m/sec
-
O\Z’Z\o

500

systematically? until it was
difficult to discern within the

time resolution of his equip-
ment (3 usec) (cf. Fig. 12). 8 .

1 | —
200 400 600
kg/mm3/2

Stress Intensity Factor
In working with Homalite 100 Fig. 11. Velocity and stress intensity factor
Beebe (1966) loaded large for KAS steel. (Extracted from
plates in tension with an air pis- Kanazawa and co-workers, 1981.)
ton; loading rates were in the
millisecond time frame (fast,
but not really stress wave load- 4
ing). He found that the crack
would accelerate smoothly to a
terminal velocity (cf. Fig. 13).
This acceleration behavior
might well lead one to consider
a dependence of the crack velo-
city on the instantaneous stress
intensity factor (Beebe did not
record the stress intensity his-
tory). Nor did Beebe’s
apparatus allow a wide
range of loading rates so that a
systematic and more extensive
study of the crack acceleration
phase was not possible. But, if
the 'brittle" fracture of Homal- 0 5 10 15 20
ite 100 mimicks -fracture of el
inorganic glass ,as studied by T|me,/.L HEC
Schardin, then an increase in Fig. 12.  Crack acceleration in PMMA. (Data of Schar-
loading rate should also shor- din, 1959.)
ten the acceleration phase.

}Fe

o Opp=2.2 Kg/mm?
3r e =14
- ; X =09

Crack Extension,cm

In fact measurements (Ravi-Chandar and Knauss, 1983a) made under stress wave
loading (cf. Fig. @ for experimental arrangement; time scale ~ 20 usec, i.e. much
shorter than Beebe's tests) show that within a time resolution of 5 to 10 wsec an
acceleration does not exist and the crack will start off with a fixed velocity. (cf. Fig.
14, for example). What is, perhaps, more surprising is that the crack propagates
thereafter at a constant velocity even when the stress intensity factor varies over @

considerable range. It thus appears that the initial (high rate) conditions determine

the crack tip damage. This crack tip damage in turn controls the time scale of its

propagation with a low sensitivity to changing crack tip stresses.

[P E——
2. Anticipating the later discussion on crack arrest Schardin also noted that cracks would always arrest

abruptly and never to undergo a deceleration phase.
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tion with a significant stress pulse

e crack changes velocity only through interac
peed is not already

~uch as occasioned by a tensile wave, and then only if the crack s

“lose to the "terminal’ speed in which case branching may ensue (Ravi-Chandar and

fhauss, 1983a). Data from these experiments are shown in Fig. 15 together with an

average "K-v curve" for the same material. The horizontal lines indicate the variation
{ the caustic-measured stress intensity while the crack maintained constant speed.
.ole that crack propagation occurs at velocities distinctly higher than the '"terminal”

vrlocity achieved in small specimens loaded by slower, more conventional means.

gation behavior emerges which is strongly

hus a rather complicated crack propa
es such as

dependent on the initiation conditions. Quasi-statically induced fractur
Lccur in most test situations investigated to date can accelerate their velocity in
~ome relation to the increasing stresses at the tip. This crack acceleration is possibly
. function of the rate of change of the stress intensity factor - not merely because of
truely viscous material effects - and not only a function of its instantaneous value.
The crack accelerates to a “terminal’ velocity if the specimen is large enough unless
.dditional wave interactions occur at the crack tip.

ilowever, if the crack motion 1s initiated very rapidly by wave action the crack will
propagate (almost) immediately with a constant velocity which increases only if a
stress pulse impacts on the running crack tip. It appears that stress pulses with a
rise time less than 15 usec are required to effect a change. in this way velocities in
excess of "terminal’velocity normally reported can be achieved before bifurcation or
branching occurs. Velocity reductions, other than arrest, have not been observed in
our experiments on Homalite 100. Thus the concept of a unique relation belween an
instantaneous crack velocity and stress intensity factor is highly questionable at best.
The problem of crack speed seems to be inextricably involved with the test geometry

and the related wave reflection history.

These phenomena are not 100 T
confined to Homalite 100.
Schardin presents data on plex-
iglass (cf. Fig. 16, Schardin
1959) in which a sudden change
in velocily occurs, which
appears lo coincide with the
reflection of the Rayleigh wave
from the boundary of the small
specimen. Moreover, data on
Araldite B presented by KalthofT L i
(1983) indicates the same effect 50 100 150
noted in Fig. 15 (cf. Fig. 17). The .

stress intensity factor changes Time, 4 SeC

by ‘more than a factor of two Fig. 16. Traveling fracture in plexiglas.
while the crack velocity remains Schardin, 1959.)

constant. There are similar indi-

calions for the velocity constan-

cy in the data of Kanazawa and
co-workers (1981) represented in Fig. 11 where the same velocity is associated with a

large range of stress intensities. Clearly there is a need to examine this phenomenon
carefully in other materials. If borne out in other solids, specifically in structural
metals, these results have serious implications for using current test data to make
failure prediction in structures subjected Lo wave loading: this aspect will be dis-

cussed in more detail in the last section.
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Microfracture at the Crack Tip

In order to learn more about the process of dynamic fracture, one can examine the
appearance of the crack tip for steadily propagating cracks by real time photography
Figure 18 shows three views of crack tips in Homalite 100 in a direction of 45% rela
tive to the crack plane. The three views correspond to growth under low, mediun

and high stress intensities, where the latter was such that branching was imminent
For all three photos the crack velocity was nearly the same. In terms of surface
roughness, they correspond to regions normally referred to respectively, as mirror.
mist, and hackle. The field of view for these photographs was about 8 mm; with a
crack speed on the order of 400 m/sec the capturing of these events required several
tests in order to capture the event through this narrow time and space '"window".

In Fig. 1B a one sees clearly the typical 'thumbnail” shape of the crack front that is
characterstic of slow (fatigue) or gquasistatic fracture. The shadow bulges at the
intersections of the crack front with the plate surfaces are caustics. At the higher
stress intensity associated with Fig 18b one observes scalloped shadows which are
each caustics resulting from individual local fractures ahead or at the front of the
common 'crack tip.” In Fig. 1Bc these individual fractures are more pronounced
(larger) and there are fewer of them; the large caustics at the crack-plate surface
intersection indicate the higher stresses as compared with Fig. 18a and b.

These figures verify through direct observation that crack growth occurs through an
ensemble of micro-cracks which advance the main crack through coalescence. Thus
crack growth at high "stress intensity”’ (high speed) really occurs by the propagation
of an ensemble of micro cracks. Atlow stress intensity factors the individual cracks
are, presumably, too small to be resolved by the photographic recording method and
accordingly the crack front appears smooth and crisp (Fig. 18a).

When microcracks nucleate at the crack front - in the sense of the work of Seaman,
Shockey and Curran (1973) - unloading waves are radiated from these sites which
appear often visible as circular wave patterns around but continuously displaced
from the crack front as, for example in the case of a high strength steel in Fig. 19
(Shockey and co-workers, 1983). The translation of the centers of the stress wave cir-
cles (nearly circles) and the difference in the circle radii suggest that the waves travel
‘with the shear wave velocity (about twice the velocity of crack propagation). These
radial waves are more frequent and more pronounced in metal fracture. Besides indi-
cating clearly that dynamic metal fracture occurs also by the propagation of cracks
ensemnbles this observation raises question of whether the size of the micro cracks
tends to be larger in metals. However, it is more likely that the stronger signal is sim-
ply due to the higher energy levels involved.

Because the micro cracks do not occur all in the same plane but are spatially distri-
buted around the "tip" their coalescence produces a rough surface. If one takes the
maximum depths of the fracture surface makings as a measure of the roughness -
and possibly as a measure of the size of the process zone - one finds with the help of a
light section microscope that the roughness increases continuously with the stress
intensity factor. As illustrated in Fig. 20, the roughness in Homalite 100 varies with a
high power (11th power) of the instantaneous stress intensity factor (Ravi-Chandar
and Knauss, 1982c). It is clear that the energy required for this process increases
tremendously when high crack tip stresses are achieved. It should be emphasized
that this increase in fracture energy is to be considered the result of high stresses
(high stress intensity) and not the result of some inherently 'viscous" material
behavior in conjunction with the high velocities that are normally associated with
high stress intensities. This latter association of the fracture energy with velocity is
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i i i k front in the 'mirrer’,
Fig. 18. High speed photomxcrographs of the crac
® 'mgist’, and 'hackle’ zones (Ravi-Chandar and Knauss, 1982¢).
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Fig. 19. Shear waves radiated from the running crack lip
(Shockey and co-workers, 1983).
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Source of Crack Speed Limitation

One of the as yel unexplained phenomena in d ic f
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for the significantly lower values of crack speeds when compared with wave propaga-
lion speeds is readily apparent. We need only consider qualitatively that if, for exam-
ple, micro cracks separated by the size of a process zone need to "communicate” only
{wice before the process zone can advance by its own length, then the crack advance
can occur at most at half the shear wave speed. Moreover, we remember from Figs.
18a and 18b, and 20a and 20b that at relatively low stress intensity the separation of
microfractures is very small (mirror zone) but increases dramatically with stress
intensity factor. One should expect

therefore that with increasing -0
clress intensity, the delay caused
by interaction of the microcracks
in the process zone should also -
increase markedly, ie. the
discrepancy between the dideal
theory (rate-independent, —con- .
stant fracture energy) and erperi-

ments should 1increase dramati- V/C,
cally with increasing stress inten-

sity. This observation is illustrated

in Fig. 21 (Ravi-Chandar, 198R),

where, notwithstanding, the uncer-

tainty aboul ils uniqueness vali-

dity mentioned earlier, the experi-
mental data for the K-v relation

Theor

E xperiment

L

(T. Kobayashi and Dally, 1977) O-O| 5 5

have been used. The “theory”

assumes that the speed is con- Kz/Er

trolled entirely by kinetic effects, Fig. 21. Stress intensity factor - crack velocity

with the [raclure energy remain- relationship (Ravi-Chandar, 1982 )-

ing constant for all velocities.

1t should be clear that for such a speed controlling mechanism to be effective it is not
necessary that every micro fracture along the crack front (parallel to it) be
influenced by every other one through wave interaction. Rather it may be only neces-
sary that for regions along the crack front some spatially limited interaction exists
which allows the gross crack to propagate more or less as a line. Such a process
would make the growth of cracks at high stress intensity & truly three-dimensional
phenomenon, even though the crack may propagate in a thick plate under a macros-
copically two-dimensional stress field.

This concept is important in understanding the transition of fast fracture to
branched cracks which will be discussed in the next section. in the context of the
present dicussion of the importance of the ensemble of microcracks we may consider
their generation at elevated stress intensity to occur spatially separated along the
crack front over distances that are equal to or larger than the dimension of the pro-
cess zone in the growth direction. Under such conditions the micro fractures can
become largely independent of each other along the crack front and the possibility
exists for groups of them to establish their own growth pattern without interconnect-
ing to form the major crack. That process leads to branching and terminates the
growth of fracture as 2 single macro crack. We proceed now to discuss the
phenomenon of branching as & natural outgrowth of the crack propagation process
through an ensemble of micro cracks.

CRACK BRANCHING
The division of a single crack into two (or more) dynamically propagating branches

has been observed quite early (Smekal, 1936; Schardin, 1959) but has eluded a truly
satisfactory explanation in terms of either analytical foundation or in terms of a
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hysics-based criterion. Yet, in par't because of its 1mpotr tance roblems of com-
pny in p
minution, in par t because of the scientific challenge to understand the thSICo

processes leading to fracture, branching has invited a continuousl

tion. y active investiga-

The earliest analytical atte ini n ntinuum
lies mpt at explaining the phenomenon
: I o i
mechanistic grounds by Yoffe (1951) is today no longer accepted pr&l;iiﬁr%oecgu
. . se

a. the predicted branching angle is uncharacteristically large

b. pllysically branchir v iti y
f g occurs at elocities subs i w h th
- ¢ e tantially belo that at whic the

- . .
g};:csk;crezfi’lcn;cumf‘erentlal to the crack tip and ostensibly responsible f i
o ldp alteration at or above a certain speed, is not a princi tos s I
) t(;lul be (Bakor, 1962) principal stress as it
evertheless, the idea that branching i
: g is a phenomenon de d i
i;iz::zi;hroggh materla'l inertia has long persisted - and slzill deonets onerts}'let C;at-‘k tl'p
e braﬁce}\l/ilner}ce, as discussed at the end of the previous section fgr exls ' Ihere x
while ! pmblemg is ogly observec} at high crack propagation speeds ('other t?’lmp o ot
et ek ioatr;"e 1;;:011;5 hlgt)llly filled viscoelastic polymers) the velocitzn;sr'}n(ezgg
mnching phenomenon rath ivi
are @ 1 ¢ " er than the dr is i
ge:tede‘ta}r:ain'?nttIEHEd in the l}terature before. For example, in n{g;ng%cotor. o
ki bu't“t,h ebredxs;clrlbutlon of the stress fleld ahead of the moving c[t}iéekt?.'n oy
: e branching event seems stress intensit i
city a necessary but not a sufficient condition for bssaﬁ:g;trlolled ler bl

tra i i irfoe |
ceable to an examination of the roughness of the fracturegsurfa:c?;lsltil‘fzsee;:\?:;gs
in

Kerkhoff's text (Kerkhoff, 1970).

The view that branching i i i
: g is a velocity or inertia ¢
P : : ‘ ' ontrolled phenom i
roughggsgst;rfnfhmfsplte of intermittent suggestions that it iSassoci:t!;?inw?tahs _pFeValled
e daror il e r.acture surfgce,_(Clark and Irwin, 1966; Congleton and P tlnl:reased
i brr;ncgmmglcl:;sf;actu;mg at the crack tip has existed. However thz icnt’elrisr?)
) een heavily flavored in the past by th ic v
on this phenomenon. Continuum analyses have dealt of neycessitirnsi{rtllcaa;gt,ek:‘esfeiguvle
ideal-

ized process/geometry becau i 4
" 5 > s se of the inher ; i p
only” the linearized theory of elasticity is use?:lr.lt SRALaemRtical difffculbies Gven ¥hen

Because of the mathematical idealizati
Pecay . ion one should expect t
repregee;tovaat‘l’uees ?;3?:t2g1%r§;ert1§:1§non kZvill be captured.pThus 1;’:2 ?.E)lglc;h;oggotss
= ranch point as well as the i i
ingul;;acr;ct;?swa:\t: t;ilre evept has occurred. Moreover it mnay be ;Z:;?k}%eo{éegst::lorltgf
g ‘iuialctmg t.he crack tips during branching on this orien;ast' y
e i g doubt? 1 e physical process of branching is evolving to be rathe o
o e (0 u lthat such analyses can produce criteria for branr;:,“)m—
o i m:arlzed) analyses deal with a continuum - singular stresszc ;in{]
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information or more advanced analyses become available such estimates will serve
for engineering purposes.

Paths of the Branch Cracks

A persistently recurring question for analytical modelling purposes is whether
branched cracks form smoothly from the main crack by turning through a deflection
angle with high curvature or whether the branches emanate with a well defined angle
from the main crack; in post mortem examination both seem to occur, but the possi-
bility exists that observed definite angles have been formed as "Aash backs' to the
main crack. In Figs. 22 and 23 are shown real time photographs of a crack tip over a
region of 3 mm in diameter in the process of branching in a 4.8 mm thick plate of
Homalite 100 (Ravi-Chandar and Knauss, 1983b, 1984) which are only "“marred” by the
caustic effect that renders the individual extensions as broad shadow bands rather
than sharply outlined entities. Because of the low contrast in the photographs line
drawings of the branches have supplanted some of the actual photographs. Neverthe-
less it is clear that the branches begin as secondary cracks parallel to the main crack
and turn continuously away from the latter. One envisages thus the process of crack
branching as a natural outgrowth of the micro fracturing at the crack tip according

to the scheme depicted in Fig. 24.

Post mortem examination shows that the attempted or arrested branches do not
span across the plate thickness; they may be at one of the plate surfaces or be totally
contained in the interior of the plate. Thus the truly three-dimensional character of
the branch phenomenon alluded to at the end of the last section becomes apparent.
It is well known that a crack will spawn branch attempts which may become arrested
at various lengths. This phenomenon adds a statistical character to the branching
process. However, the fact that (many) branches will propagate a considerable dis-
tance (cm’s) before being arrested speaks for the argument that a criterion for suc-
cessful branching (or a successful criterion for branching) must encompass not only
the local crack tip conditions but the energetics of the surrounding field to allow
branches to grow: The stresses in the immediate and intermediate vicinity of the
crack tip must be large enough to a) cause branch inception and b) to sustain growth
under the multiple unloading pulses from multiple, incipient branches to sustain
some of them to grow. A necessary condition for this to occur could be that branch-
ing can occur only "when the stress field increases,” i.e. when oty /0t > 0 in a

sufficiently large domain.

Possible Importance of Stress Intensity Rate in Branching

Before concluding this section on crack branching it is appropriate to point out that
most observations on branching have been made either as a result of explosive load-
ing or in plates under steady far field loading; the former leads mostly to multiple
branches while the latter produces bifurcation, which is the problem of greater
analytical interest. Our present understanding of branching is based on the assump-
tion that sufficiently high crack tip stresses will produce branching. Recall, however,
that the formation and growth of the micro cracks is a competitive process whereby
the microcracks must grow sufficiently rapidly by themselves to become independent
of the main crack. In such a consideration it would seem important to include also in
a branching criterion the rate with which crack tip stresses are established, i.e., the
rate with which the stress intensity factor increases. Present day experiments are,
generally speaking, not set up to consider this possible parameter.

CRACK ARREST

In practical importance the questions surrounding arrest of dynamically moving
cracks are second only to those associated with initiation of growth. Because to
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value required for quasi-static initiation of dynamic crack growth in Homalite 100
‘Bradley and A. Kobayashi, 1971) and in Araldite B and steel (Kalthofl, Beinert, and

Winkler, 1977).

vuch of the difficulties with
. nderstanding the conditions
lcading to crack arrest and
the resulting confusion
yesults from the use of speci-
mens that mimic those In
tatic  fracture  initiation
{csts, Because of their typl-
cally small dimensions it 1s
cxlremely difficult to assess
the dynamic stress field
involving multiple wave
reflections at the close bourn-
daries, and in many cases
Ihe geometries do not allow a
practical distinction between
vibration and wave
phenomena.

In order to eliminate the pos-
sible effect of (multiple)
interactions of the crack tip
with reflected waves it is pos-
sible to arrange crack growth
and arrest in large plates {of
lHomalite 100) and to follow
the crack growth history with
the method of caustics. Using
a short L(rapezoidal pulse
with the loading device illus-
trated in Tig. 2. one gen-
crates the stress intensity
histories shown in Fig. 25
which produced the crack
extension histories in Fig. 26.
From the arrest times ir I'ig.
25, one determines the value
of the stress intensity factor
at which arrest occurred.
This value, which is about 0.4
MPaVm is 11% less than the
stress intensily for initiation
of crack growth. This result
is in esszenlial agreement
with the work by Bradley and
AS. Kobayashi (1970) and by
Kalthoff, Beinert, and Winkler
(1977) in spite of the
influence of wave reflections
in the latter twe investiga-
tions. One sees thus that
there is a distinct, if not
phenomenal difference, in
the material response to ini-
tiation and arrest. From
a practical peint of
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