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ABSTRACT

Various investigators have carried out tests to determine KIc values for

portland cement mortar, concrete and fiber reinforced concrete. The value
of ch is generally derived from experimental values of the maximum load,

the length of the premolded notch and the relevant LEFM formula. The re-
ported values vary widely even for essentially similar materials. This
apparent inapplicability of the conventional LEFM approach results from a
substantial slow crack growth that occurs prior to peak load and a large
nonlinear fracture process zone around the crack tip. Theoretical and ex-
perimental methods to include these nonlinear effects are described in this
plenary paper. The method proposed considers the nonlinear coupling among
the closing pressure in the fracture process zone, and the crack opening
displacement and the specimen geometry, as well as the energy absorbed in
the fracture process zone.
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INTRODUCTION

The field of fracture mechanics originated in the 1920's with

A. A. Griffith's work on fracture of brittle materials such as glass. Its
most significant applications, however, have been for controlling brittle
fracture and fatigue failure of metallic structures such as pressure ves-
sels, airplanes, ships and pipelines. Considerable development has oc-
curred in the last twenty years in modifying Griffith's ideas or in pro-
posing new concepts to account for the ductility typical of metals. As a
result of these efforts, standard testing techniques have been available to
obtain fracture mechanics parameters for metals, and design based on these
parameters are included in relevant specifications.
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Many attempts have been made, in the last decade or so, to apply the frac-—
ture mechanics concepts to cement, mortar, concrete and fiber reinforced

concrete. So far, these attempts have not led to a unique material para-
meter which can quantify the resistance of these cementitious composites to
fracture. As a result of this difficulty in establishing fracture mechanics

parameters, researchers and designers often ask whether the fracture me-
chanics concepts are valid for concrete, and whether the conventional
strength of materials approach is not sufficient for the design of concrete
structures.

To partly answer these questions, first a brief and somewhat superficial
summary of the current brittle-fracture design considerations as developed
for metallic materials is given (see Std. Methods... for ~complete review).
Secondly, some of the difficulties in determining a valid fracture mechanics
parameter for cementitious composites are examined. Some possible current
research directions to obtain valid fracture mechanics parameters for con-
crete are indicated in the last part of the paper.

BRITTLE-FRACTURE DESIGN CONSIDERATIONS

It has been realized that under certain conditions of strain rate, tempera-
ture and constraint, many otherwise ductile structural steel fail in a
brittle manner. This ductile-brittle transition characteristic for low and
intermediate strength steels have been traditionally measured by various
impact strengths. In such impact tests, the energy required to fracture a
notched specimen (Charpy-V-Notch Specimen) is taken as a measure of notch-
toughness. Although these notch-toughness tests are useful in delineating
the service temperature range, the results which are expressed in terms of
energy cannot always be translated into structural engineering and design
parameters such as stress and flaw size. Fracture mechanics is a method of
characterizing the fracture behavior in structural parameters that can be
used directly by engineers. It is based on a stress analysis, flaw size and
the material toughness.

In a linear elastic analysis of a two-dimensional symmetrical specimen, the
stresses in the region of a crack tip in a body subjected to tensile
stresses normal to the plane of the crack (Mode I deformation) can be ex-
pressed as

1
_ -5
o, Oy = KT £(6) (1)

Note that the function f(8) does not depend on the specimen or the loading
geometry. Consequently, it is reasonable to formulate failure criteria in
terms of load and geometry dependent term KI’ the stress intensity factor.

One of the underlying principals of fracture mechanics is that unstable
fracture occurs when the stress intensity factor at the tip of the crack
reaches a critical value. This critical value is a material toughness pro-
perty and also depends on loading rate and constraint as follows:

K = critical stress intensity factor for static loading and

¢ plane-stress conditions of variable constraint and de-
pends on specimen thickness, crack size and the length
of the uncracked ligament.

KI — critical stress intensity factor for static loading and
€ plane-strain conditicens for maximum constraint (to plastic
flow). This value is minimum for thick plates.
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KId = critical stress intensity factor for dynamic loading and
plain-strain conditions,
where
K K and K., = CiVa 2
c’ Ic 1d . 2)
C = a constant depending on specimen and crack geometry
o = a nominal stress
a = flaw size

Fach of these K values may also be a function of temperature.

By knowing the critical value of stress intensity factor for a particular
thickness, loading rate and temperature, the designer can determine the flaw
size that can be tolerated for a given design stress level, or he can de-
termine the design stress level that can be tolerated for an existing crack
that may be present in a structure.

EXPERIMENTAL DETERMINATION OF K[
&

The critical value of stress intensity factor for metallic material is a

thickness dependent property. Over a certain rage of thickness, the criti-

cal combination of load and crack length at instability (K ) decreases with
C

an increase in thickness reaching a rather constant minimum value (KI ).
c

At the crack tip prior to crack extension, a plastic zone (fracture process

zone) exists. The size of this zone is much larger at the surface of sheet
specimens than at the center where the stresses in the perpendicular di-
rections (OZ) provide constraint to plastic flow. For thick specimens, the

effects of triaxial stresses (plane-strain condition) is predominant and,
as a result, crack extension takes place without any appreciable plastic

flow. Thus, a minimum value toughness (KI~) is observed for sufficiently
thick plate specimens. ‘

If the length of the uncracked ligament is small compared to the size of the

plastic zone, then elastic, plane-strain conditions are not possible. Some
idea of the size of the plastic zone can be obtained by substituting r = ry
and 7 = 0 in Equation (l1). Thus, the radius of the plastic zone is pro-—
) .
proportional to the quantity (KI/‘v )7, where o = the yield strength of
vs vs ’

the material.

To obtain a unique lower bound value of material fracture toughness for
metals, specimens are specially designed to assure that plane-strain condi-
tions exist during crack propagation. The test methods and the design of
specimens are described in relevant ASTM specifications (for example, ASTM
E-339) . Two recommended test specimens are bend specimen and compact
tension specimen. To assure elastic plane-strain behavior, the thickness of
the specimen (B), the length of the crack (a) and the length of the un-—
cracked ligament (W-a) should be substantially larger than the size of the

plastic zone. This is assured by the following minimum specimen dimensions:
KIC ’
a, Band (W-a) - 2.5 — (3)
- ¢
Vs
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These specifications assure that the specimen thickness, crack length and
the length of the uncracked ligament are approximately 50 times the radius
of the plastic zone. Note that if plane-strain conditions are not main-
tained, then the value of critical stress intensity factor (KC) will not be

unique for a given material, but will depend on the test specimen dimensions.

Various investigators have carried out tests to determine KI values for
c

portland cement, mortar, concrete and fiber reinforced concrete. The value

of KIC is generally derived from experimental values of maximum load, the

length of the premolded notch and the formulae derived from linear elastic
fracture mechanics (LEFM) concepts. The reported values of KIC vary widely

even for essentially similar materials as can be seen from Table 1 (Velazco,
Visalvanich, Shah, 1980). There are two main reasons for this apparent in-
applicability of the conventional procedure in determining the fracture
toughness parameter. A substantial slow (or subcritical) crack growth occurs
prior to the peak load. Unless this additional crack growth is accurately
measured and accounted for, a specimen geometry independent fracture tough-
ness parameter cannot be obtained. In addition to the slow crack growth,
fracture in cement based composites is associated with a fracture process
zone surrounding the crack tip. This nonlinear region is characterized by
microcracking in front of and interlocking (due to roughness of the crack)
behind the visible crack tip. Unlike a conventional Griffith crack, the
traction forces across the crack in the fracture process zone is not zero.

Portland cement concrete is characterized by strain softening and nonlinear
behavior and it is not clear that the testing specifications developed for
metals can be applied to concrete. In addition, it has been shown that the
nonlinear behavior of concrete is related to its heterogeneity; the larger
the volume fraction of inclusions, the more nonlinear and tougher is the
observed behavior (Shah, McGarry, 1971). Since fairly large grain size are
used in making concrete (23mm), the extension of the formulae developed for
metals would lead to extremely large size specimens.

An alternate approach is to modify the concepts of linear elastic fracture
mechanics to include the effects of slow crack growth and crack-tip non-
linearity (process zone) in analysing the results of fracture toughness
tests. This is attempted in this paper.

SLOW CRACK GROWTH

To limit the extent of slow crack growth ASTM-E399 specifies that the rela-
tionship between the measured load (p) and the crack mouth displacement (A)
should be almost linear (Fig. 1). This is stipulated by specifying that the

ratio of the maximum load (Pmax) and PS (see Fig. 1, for definition) cannot

be greater than 1.10 for a valid fracture toughness (KIC) test. In Fig. 1

is shown a load vs. crack mouth displacement record of a portland cement
mortar notched beam specimen described in Fig. 2 (Velazco, Visalvanich, Shah,
1980). It can be seen that pmax/PS is much greater than 1.10. A substan-

tial slow crack growth was observed during loading with the aid of a micro-
scope (Velazco, Visalvanich, Shah, 1980). These results are for mortar
specimens made with small grain size inclusions (sand particles). The ex-
tent of slow crack growth is likely to be even larger for concrete specimens
which are made with larger size coarse aggregates.
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Resistance Cu

[f the slow crack growth is accurately measured then one can calculate load
and strain energy release rate at each crack extension and obtain a relazion-—
ship between the crack growth and the strain energy release rate. Such

plots are called R-curves or resistance curves (Fig. 3). The resistance to
crack extension as measured by the corresponding strain energy release rate
(GR) at first increases due to the slow crack growth and then reaches a

steady state value (G S). [he concept of R-curves to characterize the re-
: _—

sistance during slow crack growth for rocks, ceramics, asbestos cement,
mortar .and concrete has been used by many investigators (Lenian, Bunsell,
1979; Mai, 1979; Schmidt, Lutz, 1978; Foote, Cottrell, Mai, 1980).

Measurement of Slow Crack Gr owth

o accurately measure the slow crack growth the specimens should be loaded
4t a constant rate of crack mouth displacement and the load stopped at fre-
quent intervals for measurement of crack growth. Even with the stable load-
ing arrangement, the measurement of crack growth in concrete can be diffi-
cult because of the opaque nature of the material, and the tortuosity of

the crack growth.

An alternate method to obtain the extent of slow crack growth is by so-
called compliance calibration technique. In this method, compliance of a
previously artifically notched specimen is compared with the compliance of
a specimen under test. Several investigators have used this approach to
examine the slow crack growth (Lenian, Bunsell, 1979; Mai, 197935 Footé;
Cottrell, Mai, 1980; Brown, 1972; Swartz, Hu, Jones, 1978; Cook, Crookham,
1978; Hillemier, Hilsdorf, 1971). However, with this method it is assumed
that the compliance of a specimen with an artificial crack is identical to
that of a specimen with a real crack. This is not the case in mortar and
concrete because ot the irregular and rough nature of real cracks (Velazco,
Visalvanich, Shah, 1980; Cook, Crookham, 1978) Resulting from aggregate-—
interlock, these cracks have lower compliance than the artifically cast
smooth cracks. Because of these difficulties, in the investigations
carried out by the author, the crack growth is measured with an internally
‘ope which is fitted with a micrometer. This optical

illuminated micros B
arrangement permits measurement of a crack with a resolution of 1.3 x 10 "mm.

Measurement ¢ f Fracture Res istance
From the measurement of load and crack growth, the resistance to slow crack
growth can be calculated using linear elastic fracture mechanics in terms
of either stress intensity factor (KR) or the strain energy release rate
(GR)' [his would be valid if the nonlinear effects around the crack tip
resulting from microcracking ahead of the crack and the aggregate inter—

locking behind the crack were negligible. These effects, however, are
substantial for mortar and concrete.
The significant extent of nonlinearity was observed in the load vs. load-

line deflection curves for double cantilever and double torsion concrete
specimens (Figs. 4, 5) (Wecharatana, shah, 1980, 1982). These specimens
were loaded at a constant rate of crack opening displacement. The load was
periodically stopped to measure crack growth (microscopically). The
specimens were then unloaded and again loaded.

For the case of linearily elastic, brittle materials, the strain energy
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release rate can be calculated from:

2
¢ = P dC
‘R 2 da (4)

where dC/dA is the rate of change of compliance with respect to crack growth.

To obtain GR using Eq. (4) during slow crack growth from the test results,
one can calculate the changes in the values of secant compliances (C_in
s

Fig. 5) with the measured crack growth. This procedure cannot be very
accurate for concrete since it ignores the effects of observed nonlinear de-
formation (“p) as shown in Fig. 5.

Many investigators use reloading (or unloading) compliance (CR in Fig. 5) to

calculate the value of GR in Eq. (4) (Lenian, Bunsell, 1979; Brown, 1972;

Hillemier, Hilsdorf, 1971). However, it was shown by the author (Shah,
Wecharatana, 1980, 1982), that the use of reloading compliances to calcu-
late GR underestimates the fracture resistance for cementitious composites

since that method ignores the inelastic energy absorbed during the crack
growth. To include the inelastic energy during crack growth, the author has
proposed modified definition of GR as follows (Fig. 6).

PP dCR (P1 + PZ) ds 2
(Modified) Gg = s i e EXR— (5)

[}
o
>
ja~]
i

where d*p/dA is the rate of change of permanent deformations with the crack
growth and Pl’ P2 are two neighboring consecutive loads. Attempts to modify
the linear elastic-fracture-mechanics definition of GR has also been re-

ported by Hodgkinson and Williams (1981) for polymeric materials.

R-curves calculated using Eq. (5) for mortar and concrete are shown in

Fig. 3 (Wecharatana, Shah, 1982). [t can be seen that the higher the max-
imum size of aggregates or volume fraction of aggregates, the higher is the
value of fracture toughness as measured by R-curves. It should be noted
that the conventional compressive strength of concrete specimens was lower
than that of mortar specimens, but the values of the fracture toughness as
measured by R-curves are higher for concrete specimens. On the other hand,
the reported values of fracture toughness, calculated using LEFM, gen-
erally show direct relationship with the corresponding strength values.

PROCESS ZONE

To assure that the size of the test specimen is such that the dimensions of
the process zone (plastic zone in metals) is relatively small so that the

concepts of LEFM can be applied while calculating KIC’ ASTM-E399 recommends

that:

E -_— > ;2 2
a, B, and W - a > 2.5 [KIC/YYS] (6)

where a, b, and W are the length of the initial notch, the thickness of the
specimen and the depth of the specimen, and oy is the yield strength of the

material. This formula is based on the assumption that the size of the
plastic zone is proportional to the quantity (KI /ﬂys)Z
{3
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Attempts have been made to use the same concept for non-yielding material

such as rocks and concrete. For example, Schmidt and Lutz (1978), showed
that if the uniaxial tensile strength ft is substituted for the yield

strength P in Eq. (6) then the steady-state value of fracture toughness

w15 obtained for rock specimens designed according to Eq. (6). The grain
Jize of the rock specimens used by Schmidt and Lutz (1978), were 0.75mm.

l'or that size, they found that a crack length of 100mm or greater is needed
to obtain a fracture toughness value independent of crack length. For a

much larger grain size in concrete, extremely large specimens would be
necessary to obtain a steady state value of fracture toughness using Eq. (6).

A similar conclusion was also reached by Hillergorg, Modéer and Petersson

(1976). They report that to have a valid test based on LEFM, notched beams
should have a depth of 10 times a quantity which they term the character-
istic length, 1 h which is given by:
o
KI -
C
O e - (7
ch ft

If their conclusion is valid, then one needs a depth of beams equal to 2 to
} meters to obtain a steady-state value of fracture toughness for concrete.

The process zone in mortar and concrete is related to the aggregate inter-—
lock behind the crack tip. Thus, it seems likely that the size of this non-—
linear zone should depend among other things, on size of the aggregate, the
strength of the interface between the aggregates and matrix, and the geo-
metry of the crack front. These factors are not included in Eq. (6) or (7).
To consider these effects, a theoretical model was developed by the author
(Wecharatana, Shah, 1983) to evaluate the length of the process zone. Un-—
like many previous models (Lenian, Bunsell, 1979; Foote, Cottrell, Mai, 19803
Dugdale, 1960), this model is not restricted to small-scale nonlinear zone.

The details of the theoretical model as well as detailed comparison with the
experimental data are given in (Wecharatana, Shah, 1983a;Wecharatana, Shah,
1983b). A brief summary of the model is presented here. The model pre-
sented here is applicable to concrete as well as to fiber reinforced con-
crete.

BASIC CONCEPTS OF THE THEORETICAL MODEL

A crack just prior to its extension in Mode [ opening in a fiber reinforced
concrete specimen is shown in Fig. (7). The length of the crack can be
divided into three regions: 1) a traction-free crack length which consists
of initial cast notch and the zone of crack length where fibers are com-
pletely pulled out of the matrix, 2) the region of fiber bridging (af), and

3) the matrix process zone (generally due to aggregate debonding and inter-
locking) in front of the crack tip. Both fiber bridging and matrix process
zone provide resistance to crack opening. The effect of the fiber bridging
is normally much more significant than that contributed from the matrix pro-—
cess zone, and as a result, the crack closing pressure in the matrix process
zone can be neglected. On the other hand, in case of unreinforced matrix,

there will not be any fiber bridging zone (-f = 0).

Region | (traction-free crack) and Region 2 (fiber bridging) were separated



502

at the point where the crack surface displacement was equal to néax (the
maximum crack displacement where the fiber bridging stress is zero, since
all fibers at that point are completely pulled out (Fig. 8) while the fiber
bridging zone and the matrix process zone were separated at the point where
crack surface displacement equalled to “23‘ (the maximum displacement of the

matrix in the descending branch of the uniaxial tensile test where stress is
equal to zero, Fig. (8).

The value of "Eax has been reported by Wecharatana and Shah (1983a, 1983b).
3

This value is about 0.8 x 10~ in. for matrix mix 1:2:0:0.5 (C:S:A:W). The
n;ax value used in this study was half the fiber length. This may be justi-
fied (as shown in Fig. 8) from the cbservation that fibers are randomly
distributed across the crack. The smallest pulled-out distance is equal to
zero (labelled 3 in Fig. 8) and the largest pulled-out distance is half the
fiber length (labelled 2 in Fig. 8). This implies that if the two crack
surfaces are separated by a distance of half the fiber length, there will
not be any fibers left bridging across the crack which subsequently means
the fiber bridging pressure is zero.

If fibers are randomly distributed rather than aligned, then the maximum
embedment length approaches ./2 in. Similarly, the nm refers to the

crack surface displacement where zero aggregate bridging and interlocking
pressure is assumed (Fig. 8).

[f the stresses in these nonlinear zones (fiber bridging and matrix process

zone) are assumed to be purely under uniaxial tensile behavior, then crack
"

length "a'" can be replaced by an effective (elastic) crack ”aeff such that
neff = a + -P, where 'p is the idealized length of the matrix process zone
(Fig. 7). This effective crack “ucfE" sustains two types of crack closing
pressures: one due to the fiber bridging and another due to aggregate
bridging. The concept of this model is somewhat similar to that origi-

nally proposed by Dugdale (1960) and Barenblatt (1962).

For a given applied load and an effective crack length, the crack opening
process is primarily resisted by the bridging of fibers across the crack.

It is necessary to first calculate the size of the fiber bridging zone.
Since it is a function of the crack profile and the length of the fibers
used, an approximate crack profile vas first assumed (a linear crack pro-
file was assumed in this study). Knowing the crack profile, crack length
and va (half the fiber length), the size of fiber bridging zone was then
determined. From the uniaxial tensile stress-displacement relationship and
the assumed crack profile, the fiber bridging pressure can also be obtained.
The stress displacement relationships are different for different fiber

volume fraction and aspect ratio and for plain matrix. Details of how to
obtain such relationships are described in Wecharatana and Shah (1983b).

In this analysis, it is assumed that crack will initiate as the crack sur-
face displacement at the tip of the effective crack length "a'" reaches a

value n"  (defined in Figs. 7, 8).
max

As the fiber bridging pressure distribution depends on the crack surface
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displacement, which in turn is a function of the applied load, specimen geo—
metry, the size of fiber bridging zone, the length of the matrix process
zone lp and the closing pressure itself, an iterative procedure was then

needed in the analysis as follows:

Consider a given crack length "a'" in a fiber reinforced concrete specimen

just prior to its further extension.

1. Assume a crack profile and a matrix process zone of length Zp. With the
given length of fibers used, the size of fiber bridging zone Zf can be

calculated using niax as the limit of the fiber bridging zone.

2. Knowing Rf and the assumed crack profile, calculate the closing pressure

distribution, using the experimentally obtained stress—-displacement
relationship.

3. For a given specimen geometry (double cantilever beam, double torsion
beam, and notched beam specimens were considered here), the applied load
P and the crack closing pressure, calculate, using theory of elasticity,
the crack opening displacements for the effective crack a_ -

~

If the crack opening displacement at the end of matrix process zone (ﬁp)
is equal to n$ , then the initiation criterion is satisfied and the
assumed value of Rp is partially a correct one; otherwise a new value

of ﬁp is assumed and the above steps are repeated until the initiation
condition is satisfied.

5. To further ensure that the iterated 7p and the assumed crack profile are
correct, the load line deformation (np) is calculated based on the same

elastic principle and then compared with the experimentally observed
values. If these values do not correspond to the measured data, a new
crack profile is assumed and the above procedure is repeated until this
condition is satisfied.

COMPARISON WITH EXPERIMENTAL DATA

The results of the analysis were compared with the data of notched beam

tests reported by Velazco, Visalvanich, Shah, (1980), and the double canti-
lever beam tests reported by Wecharatana, Shah (1982) and Visalvanich, (1982)
The notched beam specimens were 37.5mm wide (b), 75mm deep (w) and were

tested in a four-point configuration with a distance between the load-point
equal to 125mm (Figs. 2, 9). The length of the initial notch varied from

9mm to 37.5mm. The beams were reinforced with 17 by volume of smooth, steel
fibers (£ = 25mm and d = .25mm). During loading, the crack length, the load-
point deflection and the crack mouth displacement were continuously monitored.

The double cantilever beam specimens were 610mm long tapered beams developed
by Visalvanich (1982), (Fig. 10). The crack plane had a thickness of 12.5mm.
The beams were reinforced with smooth steel fibers (2 = 6 or 19mm, d = .15
or .4mm). The volume fraction of fibers varied from 0.5 to 27. During
loading, the crack extension and load-line deflections were measured.

The mortar matrix for both types of specimens had mix proportion by weight:

1:2:0.5. For this mortar the value of n:ax’ the critical crack opening
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displacement was estimated from the data of Evans and Marathe as .02mm,
(Wecharatana, Shah, 1983a)

A typical comparison of load-CMD curves for notched beam and the load—np

curves for the double cantilever beam specimens is shown in Figs. 11 and 12.
Theoretical plots of strain energy release rate vs. crack extension (R-
curves) for the double cantilever beam specimens are shown in Fig. 13. The
experimental R-curves were available for only one set of specimens; only
these specimens were unloaded and reloaded after each observation of crack
extension. The comparison between theoretical and experimental results is
judged satisfactory.

Note that if the asymptotic value of the R-curve is considered a material
parameter, then that value can be a useful quantity in identifying the
benefits of fiber addition. For example, the steady state asymptotic value
of specimens reinforced with 19mm fibers is approximately 40 times that for
plain, unreinforced matrix (Fig. 13). This relative improvement in frac-
ture energy is comparable to the reported value of 'toughness index" (re-
lative values of the areas under the load-deflection curves in flexure),
(Henager, 1978).

MATRIX PROCESS ZONE, FIBER BRIDGING ZONE AND CRITICAL COD

The value of the matrix process zone Qp can only be obtained through the

interation procedure which must satisfy the initiation criterion that the
m .

crack tip opening displacement equals 0 oax used here for the matrix was

0.08 x lO—2 in., as reported by Wecharatana, Shah (1983a), Wecharatana,
Shah (1983b). The fiber bridging zone was calculated from the assumed
crack profile with the condition that fibers will be completely pulled out

f .
when the crack surface displacement equals L (half the fiber length,
Fig. 8). In this study, since the value of crack opening displacement was
always less than n;ax (half the fiber length), the size of the fiber bridg-

ing zone was then equal to the crack length subtracted by the length of the
initial cast notch.

Fig. 14 shows the plot of both the calculated matrix process zone and the
fiber bridging zone (ipand lf, respectively) for the DCB specimens. It can

be observed that the matrix process zone is essentially constant with res-—
pect to crack growth. The value of Qp calculated from fiber reinforced

mortar specimen was almost identical to those obtained from mortar speci-
mens by Wecharatana, Shah (1983a), and Wecharatana, Shah (1983b). The con-
clusion of constant process zone has been also confirmed in other materials
like DMMA (Doll, Weiman, 1979), and (Schinker, Doll, 1979). The obtained
value of lp was found to be approximately about 3 in. and seemed to be in-

dependent of different fiber volume fraction and aspect ratio (Fig. 14).

A plot of the matrix process zone and the fiber bridging zone with the un-
cracked ligament in the notched beam specimens is shown in Fig. 15. The
predicted matrix process zones, using the proposed model, were found close
to what has been reported for the unreinforced moartar (Wecharatana, Shah,
1983a; Wecharatana, Shah, 1983b). Fig. 15 also shows that the fiber bridg-
ing zone increases as the uncracked ligament decreases.
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CONCLUSIONS

Classical linear elastic fracture mechanics analysis is modified to predict
fracture energy (R-curves) for cement based compsites. The predicted re-
results compare well with the experimental data of DCB and NB specimens.

The size of the fracture process remains constant during the slow crack
growth, but it depends on the geometry of the specimen. Unless this varia-
tion is considered, R-curves will not be specimen geometry independent. The
proposed model provides a method to calculate fracture resistance of a crack
in a specimen of any geometry. Calculations of crack opening displacements
were based on simple but approximate analysis and are currently being fur-
ther refined at Northwestern University (Ballarini, Shah, Keer, 1984). One
of the key parameters in the model is the relationship between uniaxial post-
cracking stress and the corresponding displacement. This relationship will
depend on the material microstructure. Experiments to determine this re-

lationship for a variety of composites are currently underway at Northwestern
University.
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Comparison of Critical Stress Intensity Factors (Mkm™2/2)

Investigators | . Steel Fiber Refnfcrced Concrete
Year of Reparts | [*TNT | Morear | Concrete - - o
Type of Testing ¥y = 0.5% Ve =3 Vg w 2%
Nishioka, et al

1978 3- - - 0.73 .- 1.47-1.76 | 1.42-1.71

4-80 --- - 0.73 --- 1.42-1.71 | 1.86-2.01
Mindess, et al. :

1977 4-80 | 0.49-0.66 | --- 0.87 |0.75-0.90 | 0.85-1.06 ; 1.00-1.31
GJory, et al.

1977 3-30{0.09-0.11 | 0.16-0.2 | 0.07-0.24 - --- --

Hillemeir, et al
1977 (34 0.3 0.37 --- - --- .-
Brown, et al. 0.3 0.65-0.9 - - --- i
1973 4-50 2.43 | 0.60-1.1 --- - --- -
ocs
Harris, et al
1972 3-80 Ory - 0.4 --- - --- 0.43
Wat % 0.41 i 0.57
Kesler, et al. |
1s72° Ccp 0.14-0.28 [ 0.4-1.2 |0 s - --- -
| |
Velazco, et ai. ! .
1980 - 0.5 - 2.6 | 0913 2.8

3-80 - 3 Points Be

0CB = Double Cant!

nding  4-80

lever Beam

- 4 201nts Bending CT = Compact Tension

CCP » Centsr-Cracked Plate !ncer Tension

Table 1
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S = 1371 > 110

1

CRACK MOUTH DISPLACEMENT

3 3 b

Fig. 1 - Slow Crack Growth in Mortar
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for the DCB Specimen.

10 - Application of the Theoretical Model
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