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ABSTRACT

The lecture reviews, in broad terms, the development of experimental fracture
mechanics during the last two decades. Optical standard techniques for the
experimental determination of K-factors are surveyed and recent developments
of the methods are presented. Emphasis is given to the widely utilized
methods of photoelasticity and caustics.
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INTRODUCTION

Experimental fracture mechanics is of paramount importance to the
practitioner, because it provides him with an immediate solution of problems
concerning concentrations of stresses and strains in cracked or notched
elements of structures and machines, which cannot be otherwise directly
observed, and which are usually beyond the reach of calculation. On the
other hand, the theoretician, in contact with the experimental developments,
gets more intuition and ideas, which provide a basis for further theoretical
analysis. The lack of many quantitative theories, e.g. for dynamic crack
problems and the general demand for checking the analytical studies create
the need of more and more sophisticated experiments in the area of fracture
mechanics. This is one of the basic necessities in fracture mechanics and it
is hopeful that, at the present state, the experimental studies all over the
world are directed toward this target.

Experiments on fracture are executed for diverse purposes: testing of
criteria predicting material failure, Charpy values, crack opening
displacement (COD), etc. Here, we are restricted either to the formulation of
fracture-mechanics theories, or to engineering specifications of materials.
The stress field produced in an elastic cracked plate has a universal
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spatial dependence and the only quantity, which varies from one specific case

of load:@ng-cor}ditions and geometry to another is a scalar, the so-called 2{%\] = /r \“#i 2n+3 1 n 1’_3’@:1’) [cos(n + —1—\}%
3] stress intensity factor K. From the practical point of view, the stress [1+sin 2) ] + z \2a) m(‘ ) 2 e s 5 (21) L 2,

singularity at the crack tip can be characterized by the K-factor, and the \2/ n=1"

critical load required to start a pre-existing crack or notch in a plate can KII

be predicted, if the fracture toughness, expressed by K., of the material is ( 1\ )\L)]\ + o (l-k)cos2B + T

5
known. The usefulness and the attractiveness of the experimental methods 2 (ma)
presented in this lecture are due to the fact that they provide a direct
measure of the SIFs, without any consideration of field quantities or

boundary conditions.

1
—\n + E}sin%sin\n )

The state of the art in the experimental methods for the determination of \

stress intensity factors (SIFs) is reviewed and recent progress exclusively % " -1 \— ( 1\
in optical techniques is outlined. It should be understood that it would be z cf (_r_\n 2 2n+3( )“ 1_3_,—(—‘1-—-) 2sinyn + ‘2‘}3 i+
impossible to adequately treat all the details of the impertant developments i * 1\2(1/ 2n+2 2.4...(20) |

fi=

in the domain of experimental fracture mechanics in this lecture. Therefore, ¢
descriptions of the various experimental techniques will be brief; only ! 1\
their essential features and some of characteristic applications to practical % (n + = sin%cos\n = ‘;}3_‘
problems will be critically presented. It is the author's hope that the : 2) -
readers of this lecture, will be able to identify particular techniques,

which perform their claims, and refer back to the original papers for

further study. { N . 15
K i (39\] 4 32V eosd(2) +
L - () cos()[pran3)en(F)] + 2ae) o)
{ THEORETICAL PRELIMINARIES . ¥ 2(na)
4 For a homogeneous isotropic or anisotropic planar body,containing a straight ‘ @ + Int3 a 1.3...(2n-1) [{ i —l—\sin%sin(n — l\l% +
i k in the Oxz-plan three fundamental stress fields are associated with _r_\ & (-1) B s ] 2,
i grac Xz2~P €3 - - - +z 2 } 2n+2 2.4...(2n)
the three modes of crack surface displacements (Irwin, 1958; Paris and Sih, n=l\ a
1965). Mode-I displacements occur wvhen the crack faces separate normally ,
(in the Oy-direction) to one another. For mode-II, the displacements of the s 1 KII (r\—-‘i {%\ {—%—\cos{i\\ _
crack faces are normal to the crack front (in the Ox-direction) and in the + cos{n +=19 e T _} Sln\i}‘:os\z} \2}
crack plane. In mode-III, the displacements of the crack faces are parallel \ 2, ] 2(na)”
i to the crack front (in the Oz-direction) and in the crack plane. In the
theory of two-dimensional isotropic elasticity, the stresses and i i 2(8" T /() 2n+3 nl1l.3...(2n-1)
displacements may be expressed in terms of two complex functions ®(z) and : _ }_{_r_\ sln(*%' cos 21 = z \'i_} 2n+2( ) 2.4...(2n)
¥(z) of the variable z=x+iy (Kolosoff, 1909; Muskhelishvili, 1953). These 2\2‘1} \2} \2} n=1 .
complex potentials are related to the Airy stress function F by }
i F = Re[zd(2)+¥(2)] (1) (n + —)sin%cos\n - %)8}
Special cases of the Kolosoff formulae are given by Westergaard, 1939, and J
they were widely utilized by the practitioners and experimentalists in
fracture mechanics for many years. Analogous relations may be derived for i
the dynamic crack propagation (Radok, 1956) . K ( \__1/2 (%\\ (3\ (3%\ gf—r—\ﬂsln{&\cc’s(&\ -
Similar to dynamic relations may be also derived for the case of a stationary 7 _ I . —2_/ sin\—z—}cos\i ’COS\—Z_} - 4\2a \2} 2}
crack traversing an anisotropic plate (Sih and co-workers, 1965). Xy 2(“01)/2 \2a ‘
Following Irwin's analysis (1957) and factoring out the K-factors from the \
series expansions of the complex potentials, the stress—components take the o n — 1
following form for an infinite plate with an internal stationary crack of _ ): r\ 2n+'_;( 1)n ‘;.'2::"_((%2—)1151“%(:05(“ - —2_}% \ *
length 20, inclined at angle B with the imaginary axis,and loadings n=1\2°‘} 2nt ’
cmy,cmx=kcmy at infinity (Theocaris, 1977; Theocaris and Spyropoulos, 1983). ) {
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29 e\ 2043, n 1.3...(2n-1)
[“51“ (7)} * 1 (E) w2V 2w
n=1
[cos(n + %)8—<n + %)sin&sin(n - %)8] } (2)
)

Generally, in all stress fields around cracks a constant term 0oy will be
arised, which is similar to va(l—k)COSZB in the above relations.
For mixed mode propagating cracks, the Sneddon-Radok equations give

K_B

KBy W 2 9 cos(&l/Z) 48182 cos(%z/Z)
x ;| (172878 - 2 5 *
(2n) T (1+82) r,
K B sin (9. /2) sin(9,/2)
+ AAA—iL {—(1+281—82) Ll + (1+8§)‘“‘*;g**—] + (other terms)
(2n) r’ T
1 2
B KIBI . 2\(:05(5)1/2) 48182 cos(%2/2)
y T, E [T % *
(21) ) (1+82) r,
K sin(9, /2) sin(9,/2)
4 AL ;I [(l+B§) ,1 - (l+B§) »2 ] + (other terms)
(21) rf r;
) K B, , 31n(%1/2) sin(%z/Z)
xy ~ ol Rt i = 2y s M
y (2m) r T,
1
2
K_._B cos(9,/2) (1+8,) cos(9,/2)
+ LI }I [261 Ll T 2 »2 ] + (other terms) (3)
(Zu)’i > 2 2
1 2
1+82 28,
where BI e T BII = (4)

22 2,2

48132 (1+82) 45182 (1+82)

s i%y | 2. 2,9 ; )
and z:;=x+if.y=r.e (j=1,2), where Bi-l—u /Ci’ v being the crack velocity
and c: being the longitudinal (j=1)- and shear (j=2)-wave velocities.
It may be noticed that the parts of the non-singular terms in Egs.(2), which
are independent of the r- and 9-coordinates,are different for other boundary
conditions. Particularly, the independent term of r- and 9-coordinates,
mostly designated as o,y, in the ox-stress expression was considerably
studied (Liebowitz et al., 1978). However, it will be shown that this term
does not influence the size and the shape of caustics, whereas it plays a
significant role in the interpretation of SIFs from photoelastic
experiments. Irwin and co-workers (1979) establisned that,for SEN-specimens
(Single Edge Notched) and MCT-wedige-loaded-specimens (Modified Compact
Tension), opx is relatively small, for MCT-pin-loaded-specimens, 0O,y is
medium and for DCB-specimens (Double Cantilever Beam), 0py is large, with
respect to the remaining part in the oy-expression.
Rather comprehensive collections of SIFs are contained in Sih (1962),

;
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and Paris and Sih (1965). Catalogs of values of SIFs for sevefal proble@s
have been published by Cartwright and Rooke (1974), Taqa, Paris and ?rw;n
(1973) and Sih (1973). Most of the solutions inc%uded in these treatise
have been derived analytically, as well as numerically.

Whereas in the early days of fracture mechanics studies,experlmental} -
i i his i sha

techniques were based on strain-gage measurements.in this review we bourseiveq

present any application of this experimental technique,restricting > €

3 stic—emission
to the more potential optical methods. For the same reasons acoustic-eml
techniques will be avoided.

MOTRE METHOD

The moiré effect is an optical phenomenon observed when two artays'oi i;neb
or dots are superimposed (Lord Rayleigh, 1874). if the'arrays L?nsistion
opaque parallel lines, which are not identical in spacing or Ortzg afall,on
then moiré fringes are formed as the lines of one array 3{2553? yThc >
or between, the lines of the other array C?heucarlsj 1e6%). ¢ .

method based on the moiré effect was widely utilized 1§ the’anély§1§1ow5
deformation of solids. The basic elements of the7t§Chn1q?e 1§‘as fo ioted
(Theocaris, 1969; Durelli and Parks, 1970): A moqc/ grating }b ?%foi;jm@nf
with the surface deformations of a specimen, acting as a rgfarﬂnoble,ﬂ£Aé;

of the changes of the surface from the initial to deformed.§tate. n 0d

to determine the changes in the geometry of the rode? gpqﬁzng? a SQCZZ S
grating, the reference grating is introduced. Then: a Wo1re pattiril =

on the image planc of the observation system. Moife frlﬁges are i(Lendicular
points,having the same component of displacement in a d1rect1§n’pcritern .-
to the grid lines of the undistorted grating. The complete.molrefpn e ;n
thus be visualized as a displacement surface, where Fhe height o fa r) at on
the surface above a reference plane represents the dlsplngement 0.‘E1L s

in the perpendicular direction to the ref?renre—graFing 1lines: ::liong e the
approximate interpretation can be used, without §er10us erf?r;’«- L e
deformations are small. Three moiré patterns, oriented at differen (niq o
with respect to one another, can be used to find thre? norma¥ Comﬁon?Ul; o
strain at any point in the field. The well—knnwv eraln—ro§eL§? :{nns

tten be applied to determine the principal strains ?nq their 1re? 1: .;n_
Therefore, a moiré& pattern is equivalent to an infln%tg Qumber o tfoga

gage rosettes on the surface of the specimen. The moiré fringe meth e
determines the displacement field directly, and thgrefofe the approp

stress function can be determined by fitting Fhis tunGt%ov to ;h? N
experimentally determined displacement field in the vicinity 0"31‘5188(1q o
or running crack tip. A series expansion of the complex pot%nt;; sFor €
expressions for the ux—anduy—displacements, analogous to th.é .

instance, the mode-1 static displacement field can be expressed as

K ’s

1(x 8\[1-v ,2(3)]

=il e —||— + s = + (other terms)
() e+ (D))

K 's
I(r (8|2 _ 2[00} & ther terms)
v~ ?(ﬂ) Sl“(z)[lw (z s

Taking measurements from a number of points in the close v1c?n1§y ofsthe
crack tip, the K-factors may be determined from Eqs. (5), or ana.ogou .
relations. The technique must be applied with care to the dynamic zrics .
propagation in strain-rate sensitive materials, where the shear‘mo UTEQ
changes allover the specimen, throughout the period of propagation.

=1
|

(5)
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moiré method in fracture mechanics was succesfully applied to several crack
problems by Kobayashi and co-workers (1965; 1967; 1969). The pattern around

a sﬁatic crack in Fig.1 is taken from an unpublished work of the present
author.

S PPN e

b S e i AN

Fig. 1. Photograph of moiré fringes around an edge crack.

In spite of an obvious lack of semsitivity, the moiré method is really a
valuable method for the determination of the amplitude of the singula}ity K
(Hutchinson 1968) in the presence of small-scale yielding around a crackAtigj
However, experiments performed by Liu et al. (1970) in cracked plates made of
an aluminium alloy, shows disagreement between the r=(1/1+n) theoretical

g p < . i
dlstr}butlon of strains and the r~% experimental distribution around the
plastically deformed crack tip.

INTERFEROMETRY

Interferometry is a powerful tool for measuring strains, deformations and
deflections and its high accuracy makes it capable for applying it to
experimental fracture mechanics. This method can measure absolute variations
of the optical path in the two principal directions (Favre, 1929). Variations
of the Favre principle were revieved by Theocaris (1969).Interferometric
measurements were also used to obtain isopachic patterns in thin specimens
under generalized plane-stress (Tteocaris, 1963). Post (1953) has introduced
interferometry in fracture mechanics and Oppel and Hill (1964) initiated the
use of interferometry as a technique for qualitative plastic-zone studies at
the roots of cracks and notches.

For any point in an elastic plane-stress plate, it is valid that

- .M
Ad = E (01+02) (6)

where d is the thickness of the unloaded specimen, Ad the variation of
thickness under load and 0;,0p the principal stresses.

Thus, a precise measurement of the change of thickness caused by loading
allows the accurate evaluation of the sum of the principal stresses in the
plane-stress system. If light rays are incident upon a transparent plate, a

7173

small portion of the light is reflected back from each surface. For tvpical
polymers resembling glass, for which the refractive index may be taken
approximately equal to n=1.5, it can be deduced (Bern and Wolf, 1970) that
almost equal intensities of the order of 4% are reflected from the front and

rear faces, and the multiple reflections

are relatively insignificant. Thus,

the first reflections from the front and rear faces, being of equal
amplitude, can readily,in the case of sufficient optical coherence, interfere
to form high-contrast interference patterns (Haidinger fringes). with light
travelling at a constant velocity in the material, the relative phase is a

function of the optical path difference.

The loci of points satisfying the

well-known interference relation form dark fringes, representing contour

lines of constant plate thickness. Photo

graphs are taken of the model in the

joaded and unloaded state. The fringe shift An, caused by the loading, may be
counted for any point, and the (ol+02)-sum of stresses can be readily and

accurately derived.

Fig.2 shows the pattern of isopachics around an internal transverse mode-I

crack (Theocaris and Spyropoulos,l982L

. \\\\8 ‘
30 \"\\E.\\\\'\\\.\\ :

[ : A5 !
a‘\ \ \;\;\\_‘-\\\‘\ \i

{

Fig. 2. Experimenfally obtained
isopachic fringe pattern for
mode-I,deformation.

The only disadvantage of the
method, as it is presented above,
is the necessity of the initial
uniformity of thickness of the
model, to avoid excessively high
fringe-densities.

The last restriction can be avoided
by using holographic interferometry.
Holography, or wave-front
yeconstruction, is a method of
storing information concerning the
three-dimensional nature of an
object (Gabor, 1948; Leith and
Upatnieks, 1963;1964). In
holography, standing waves are
formed by the interference of two
coherent-light beams in the plane
of a high-resolution photographic
plate. The developed plate
(hologram) is a diffraction
grating, which has the important
property of reconstructing the
object beam,when it is placed
exactly at its initial position and
illuminated by the reference beam
under identical conditions of
geometry of the experimental set-up.

First, a reference hologram is taken of the model in its unloaded state. The
ljoad is then applied and a second hologram was recorded on the same plate.

The loading causes a change in the optica

1 thickness of the model and, hence,

a slightly different image than the reference image. In the reconstructing
procedure of the hologram, these two images interfere, resulting in an
isopachic fringe pattern. A geometric interpretation of holography, based on
the theory of moiré, was given by Theocaris (1971).

The important advantage of the holographic interferometry is that only the

change in the optical thickness, that

occurs between the two exposures is

recorded. Therefore, there is no restriction for perfect flatness or

parallel faces (Fourney, 1968). Fig.3 shows holographic interferograms of
crack tip region in a Polymethyl-methacrylate (PMMA) specimen at 96 percent
of the fracture load, as recorded by Dudderar and O'Regan (1971).
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In transmission interferometry the

intensity equation becomes equal to
zero and yields dark fringes at loci
where the sy—strain is expressed by

_ -A(2N+1)
z  2(n-1)d

€ (7
where A is the optical wave-length and
N is the fringe order.

On the other hand, from the elastic
solution of the problem of a cracked
plate under mode-I deformation the
singular part of the € -strain is
expressed by “

ZVKICOS(S/Z)

€ = =
Z

3 (8)
E(2nr)
Eqs.(7 ) and (8 ), give the stress
intensity factor in terms of material-
and experimental-arrangement
parameters, the fringe order N and the
location of the point of measurement.

Fig. 3. Near- and far-field
holographic interferograms
of crack region in a PMMA
specimen (courtesy of Dr.

T.D. Dudderar). 5 ; )
Since the interpretation of the optical

pattern near the crack tip is
difficult, due to various perturbations,such as the steep variation of the
stress field, which indicate a steep variation of the isopachics, the
triaxiality of the stress field, the nonlinear variation of the refractive
index, etc., the region far from the crack tip is the only convenient region
for measurements. Therefore, by ignoring terms, which affect the isopachic
fringe patterns, inaccurate results are obtained in evaluating the SIFs. The
following general method (Theocaris and Spyropoulos, 1982) for the
determination of SIFs using interferometry is briefly discussed: The first
invariant I of the normal stresses is taken from Eq.(2) in a series
expansion form. Measuring now the instantaneous crack length 2a and having
the experimental value of the invariantat I=Nfp/d, where f, is the
isopachic-fringe constant, the expression of the invariant I may be written
as

= + +
T = BKFCK +X (9

where B and C are functions of the coordinates of selected points and the
crack length and

X = qm(l—k)cos28 (10)

Eq.(10), applied to three points arbitrarily selected from an isopachic
fringe pattern, gives a set of three linear equations with three unknowns,
the K;- and Kyy-stress intensity factors and the quantity X, which can be
readily evaluated when this system is solved. The isopachic method was also
introduced in the problem of fast running cracks by using a pulsed ruby
laser and the high-speed photography technique (Holloway et al., 1978).
Rossmanith (1979) inserted a dynamic correction, in the interpretation of
Holloway's experiments and derived the dynamic stress intensity factor,
using the singular expressions with the addition of the constant oox-term

only.

In conclusion, interferometry is a valuable method for the ?xper}ze;tat
determination of SIFs which, nevertheless has not been applied wide yndymany
experimenters, because, mainly, it requires complicated apparatuses a
measurements, when high accuracy is desired.

PHOTOELASTIC METHOD

photoelastic measurements interrelate the relative rgtérdatlzn wlz?Szezizlzs
stress— oOr strain-components. The method can be s?n51t1ve an‘ prinons =
self-sufficient for the determination of the magnltud§ and dliécdlto O e
maximum shear stresses. The photoelastic mgthod was first agpwlils o reet
mechanics problems by Post (1953) for statlona?y cra?ks, an . e Lo
(1958) for running cracks. In the wellfknown discussion of the ini = rar
mentioned paper by Wells and Post, Irw1? (1958) sugge%te@ a tec Since O e
the determination of Ky-factor, exploiting photoelastic trlnges(.i ne
early studies, much time has been devoted to gevelop new Tfthéhf’statjc or
refi‘nements of the original ones, for evaluating SI¥Fs, either 5
i amic cracks.
iiwigwsmi;otparameter method retains only the sin%ular and th? coastaniics
term and expresses the maximum shear stress Ty, gilven by.the isoc ro:z ~
in a photoelastic stress pattern, in terms of thg cartes1§n co?ponige Ol
stresses. Definition of the polar angle 9,for which a ma§1mum or 11025
stress exists for a single fringe loop of the photoelastic pattern,a
valuation of Ky and ogpx—stress. . .
;EEeSnge and DallyI(1977) have pointed out, in.a-rev1ew artlclez t?iz Ezige
two-parameter methods are applicable for d?termlnlng KI-féctors 12nd R
73°<8m<139°, provided r,/a<0.03, where r, is the apogee qlstance 2 tge
the fringe loop tilt. 1f no measurement errors are made in rp O Ym»
preceding methods predict KI with *5 percent accuracy.

31 1 B
Three-parameter methods (r_ﬁ—,rﬂ—and oox—terms'included in the }s‘er%zse o
expansion), proposed by Ioakimidis and Theocaris (1978), and Et e;l %ion e
pally (1978), have improved considerably the.accuracy of SIF—eYa ?a on o
allowed measurements outside the close vicinity of thg crack tip orf s
deformation. The first technique was based on properties og compli::ZTunfor
and simple geometrical relations and made use of the relation Opx=*4Tp

y=0 and the polar expression for KI for an angle 9,given by

| e %ox 39 (11)
Tm|cos%| = | cos(3 \

wo
The second one was based on measurements of r  and %m‘from any t

m s -
independent fringe loops and results to a cubic equation for the r’2-paramete
which, when solved, gives the KI— and cox—values.

All preceding methods necessitate measurements froT the_clo?e V;C1?152525

the crack-tip, because they use terms only up to 1?2, which is t ed othere i
order non-singular term in the series expansio?. On the other hén N e ta

a number of reasons, which dictate the obligation to take exper;megta

in regions relatively far from the crack tip:.a) The geometry © tkz
artificial notches, which are often used to simulate the real ifaid ’This
influences greatly the near to the bottom of the notch stress 1;-1é74) vho
effect has extensively been studied by Smith and co-workers ?197 31 f;ctors
found the influence of the end-notch geometry on the stress intensity
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for various notch configurations. They established that the difference
between the stress fields existing at the tip of a real crack and at the end
of a notch, is considerable in the close vicinity of these regions. Creager

and Paris (1967) gave also the expressions of stresses for a slit with radius

o at the root of the notch under mode-I deformation, by adding in Eqs.(2) a
corrective term to the expressions of the stress components. After this
correction it is seen that, while the photoelastic measurements are related
to the difference of principal stresses, and therefore to all Cartesian
components of stresses, are dependent on the radius p of the root,
measurements based on caustics or interferometry, which depend only on the
sum of principal stresses, are independent of p. b) The high-stress
concentration at the vicinity of the crack tip results in an enhanced
isochromatic-fringe density, so that the order of the isochromes in this
region may exceed the linear limit in the stress—-fringe order curve of the
material. c) The high strain gradients near the crack tip create a region of
three-dimensional stresses in specimens of finite thickness and therefore
deviations from the two-dimensional theory. d) Non-linearity effects, as well
as formation of voids and crazes in the crack tip zone.

For all the above and other reasons, although the idea of using the
photoelastic method of stress analysis to the solution of crack problems
seems to be attractive, many difficulties are encountered during the
application of the method, especially in real crack problems, where neither
the form of the crack, nor the near to the crack stress fields take an
idealized form. Indeed, Fig.4, taken fromDally (1979), shows a photoelastic
experiment with a branched propagating crack, where any measurement at the
close vicinity of the crack tips seems to be impossible.

Two different approaches (Theocaris and Gdoutos,
1978, Theocaris and Spyropoulos, 1983) have been
employed to overcome the already mentioned
difficulties, by taking measurements outside the
undesirable crack tip-region. The first one is
based on a comparison between the far- and the
near-to-the-crack tip stress fields and the use of
suitable extrapolation laws for the determination
of the near stress-field characteristic parameters,
by gathering data from the far-stress field. The
second one, making use of the series expansion-
relations, i.e. Eq.(2), results in a system of
three non-linear equations of the three unknowns
K1, Kyp and 0,,. This system can be solved with the
Newton- Kaphson method. Three measurements of ¥~
and $—coordinates in one fringe loop are required.
A predetermined accuracy with respect to the
external load is introduced, in order that no
amount of terms greater than the predetermined
accuracy is added. Fig. 5 (Theocaris and
Fig. 4. Isochromatic- Spyropoulos, 1983), shows a comparison between
fringe pattern analytically generated isochromatic fringes when
representing higher order terms are considered in Eq.(2). Only
crack the four-term (dotted) lines approximate
propagation satisfactorily the seven-term (continuous)
after branching isochromatic lines.

(courtesy of
Prof. J.W. Three-limensional crack problems treated by

Dally). photoelastic techniques during the last decade were
executed mainly by Smith and his associates.
Reviews of this work one can find in Smith

R—
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(1975;1981) and thus it is not

considered necessary to give here
.. 1 term details of these studies. However,
if one considers the difficulties
in solving analytically crack-
problems in three dimensions, and
especially in part-through cracks,
where, besides the three-
dimensionality of the problem, its
asymmetry in loading and geometry
is added, the solutions by Smith,
based on classical photoelasticity,
constitutes actually, perhaps, the
only secure information, concerning
-0 this important problem. In three-
;;900 015 dimensional'through—crack problems
ETA=0.010 rla also, experiments were conducted by

villarreal and Sih (1981) to
confirm the Hartranft-Sih theory
(1968;1970) by the use again of the
frozen-stress technique.

— 7 terms

Fig. 5. Pattern of isochromes in an
infinite plate with an
internal transverse crack
submitted to mode-I
deformation as plotted by
computer.

Since the pioneering work of Wells
and Post (1958), photoelasticity
was employed in numerous dynamic
studies of fracture. Among others,
Kobayashi and co-workers (1970;
1971;1677;1978;1981) and

Dally and co-workers (19773;1978;1979) developed techniques to
interpret dynamic isochromatic fringes, or applied dynamic photoelasticity
in special problems. The recording systems involve a Cranz-Schardin
multiple-spark, high-speed camera (Wells and Post, 1958; Riley and Dally,
1969). Up to the seventies, a static analysis was employed to evaluate mode-—
1 SIFs from a dynamic experiment. The first attempt to analyze fringes
associated with dynamic cracks, utilizing a dynamical crack propagation
theory (Yoffé, 1951; Radok, 1956), is due to Bradley and Kobayashi (1971).
Rossmanith and Irwin (1979), utilizing dynamic expressions for a mode-I
crack, moving under constant velocity, gave, in the form of correction
factors, the Kdyn-stress intensity (Dally, 1979). Later on, Kobayashi and
Ramulu (1981), using the same dynamic solution, extended the preceding method
to mixed-mode crack propagation. They established that relatively small
differences exist between the stress distributions around static and dynamic
cracks. Very recently also, Kobayashi (1982) extended his previous
analysis to the case of small plastic zones around the opening dynamic
cracks, using the Dugdale strip-yield-zone model (Kanninen, 1968) .

THE METHOD OF CAUSTICS

The method of caustics is based on geometric optics and it has been
succesfully applied to cases of both transparent and opaque solids. As it is
well-known, when speaking about a caustic, we mean a curve Or a surface along
which a high light-intensity is observed. A caustic curve or a caustic surface
constitutes an envelope of light rays, separating an illuminated from a dark
region. In this way, because of the high luminosity of the caustic, this

curve (or surface) can clearly be experimentally observed. In what follows,

we are concerned only with caustic-curves, which are formed on a reference



—

i

N,

R ——

718

screen by intersecting a caustic surface in space. Moreover, although the
method of caustics is capable for the experimental determination of various
types of stress—fields, where strain-gradients are involved (see references
in Theocaris, 1981), attention is focussed in this lecture to the case of
cracked bodies.

Referring to an in-plane loading of a specimen, the stress intensification in
the region surrounding the crack tip produces a reduction in the thickness of
the plate, because of the lateral-contraction effect and/or a variation of
the refractive index along the same direction. As a consequence, the incident
light rays in the vicinity of the crack tip are deviated and formed the
caustic-envelope (Theocaris, 1970;1971). Considering anti-plane loading of a
thick cracked plate, the cylindrical curvature formed by the out-of-plane w-
displacements acts also as a deflector of light and creates a caustic, which
has again the form of a generalized epicycloid (Theocaris, 1979;1981).

Fig. 6 shows a stressed specimen (S,) and a viewing screen (Sc). Points
P(x,y), denoted by z=x+iy, on the middle plane of the specimen, have
projections P'(X,Y) on the screen, located at a distance z, from the plate,
along the Oz-axis normal to the specimen.

Fig. 6. Geometry of the formation of a caustic from a
cracked specimen (Sp) on a screen (Sc).

The mapping of the deflector plate (reflector or refractor) on the screen for
a parallel (also convergent, divergent) light beam, impinging normally on the
plate, is expressed by

W= Aztw (12)

where w is the complex coordinate of the deviation of the light ray from
point P' to point Q, after reflection from, or transmission through, at point
P, and A is the magnification factor of the optical apparatus.

Considering that the variation of the refractive index in the vicinity of a
crack tip in a transparent plate with parallel lateral faces has the same
effect on the passing-through light, as a deformed surface on the incident
and reflected light (Theocaris, 1984), we may limit ourselves to the case of
reflection from a deformed opaque surface z=f(x,y).

According to Snellius' law of reflection, it is valid that

i
i

w=w itw j
X s

with
W, = (z—zo)tanZn ) wy = (z—zo)tanZB 11
of (x,¥)
tana = EﬁéZLXl 5 tanf = BJL?
x 3 I
As a consequence and, by virtue of Eq.(12), the vector W=Xi+Yj may be
roximated by
e A (x,Y) v o= ay-2 Af (x,Y) (15)

X = Ax-2z 3 y-2z4 3y
‘ ’ . y cte as small
where second-order derivatives of the function f(x,y) are ?egl(ctti, a;méll
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whe - -
i 2 far-field optics).
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deformed surface f(x,y) in Eq.(15), for this problem must be determ . g
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Fig. 7. Topography of the deformed face around a crack
tip for mode-l deformation as plotted by computer.
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plane-stress conditions, because of the lateral-contraction effect and the

high stress intensity there. Points on the crater, for which the tangent planc

has the same slope with respect to the undeformed middle plane of the plate,
belong to an initial curve. A large number of initial curves exists, each of
which being defined from the parameters of the optical set-up. However, the
zone along which these curves can extend is limited to a narrow ring around

the crack tip. For the extent of this ring whereundesirable non-linear elastic

or plastic strains are occurred near the tip, appropriate values must be
given to the optical parameters A and z(y. In this case higher-order terms
must be also considered in the series-expansion form of stresses, in order to
have precise results (Theocaris and Ioakimidis, 1979). It is clear from the
above-mentioned general principles of the method that the main cause of
deficiencies of all the other optical methods to approach the near-tip region
and to take precise measurements from this region disappears in the method of
caustics, and this constitutes the basic advantage of the method. Moreover,
the experimental arrangements utilized for stationary or dynamic cracks, are
very simple and no special care for the specimens is required for tests with
caustics. On the contrary, sophisticated arrangements are needed for
interferometry and photoelasticity, as well as special preparation for the
models in moiré.

We consider now the general case when the rays of a light beam, which impinge
on the front surface of a specimen under in-plane deformations, are refracted
on this surface, traverse the specimen, are reflected from the rear face of
the specimen, traverse once more the specimen and are refracted once more on
the front face of it, before they leave the specimen and impinge on the
screen. The cases of a single reflection from the front face, when the
material is opaque, and the transmission through the specimen without
reflection on the rear face of the plate, when transmission optical
arrangement is used, are therefore special cases of the general one.
Employing Neumann's strain-optic law (Favre, 1929) and the two-dimensional
Hooke's law,either for reflection from the rear face (indicated by the
subscript r), or transmission (indicated by the subscript t) we obtain
(Theocaris, 1971;1984)

ps¥°t = de [(o; ,+0. )E_ (o, ,-05 )] (17)

1,2 r,t 1,2 2,1 r,t " 1,2 2,1

where c,  denotes the optical constant and Er,t the index of optical
anistropy.
It is seem from Eq.(17) that, in the general case of optically anisotropic
materials, two caustics are formed, each close to the other, since we have
two values for the variation of the optical path. Moreover, the shape and the
size of these caustics is dependent on the sum, as well as the difference of
the principal in-plane stresses.
Although the problem has been also treated for the case of birefringent media
(Theocaris and Papadopoulos, 1981), for simplicity in the calculations, we
prefer optically isotropic (inert) materials as models. In the latter case
5r,t=0' Thus, only the first invariant of the stress tensor influences the
characteristics of the respective caustic for a given problem. This is an
advantage of the method over the photoelastic method, which is restricted to
birefringent models, and its isochromatic patterns depend also on this
difference. Moreover, as it has been already mentioned in the analysis of
photoelastic method, the difference of the principal stresses is dependent on
the radius of the root of any artificial crack or notch, whereas the sum of
principal stresses is independent, since the correction terms in the
Cartesian components of normal stresses cancel out by addition (Creager and
Paris, 1967). Therefore, the gecmetric characteristics of the caustics, as
well as their relationship with the intensity of the fields are not influenced

by the geometry of the crack-or notch-tip regions. Consequently, the method
can be also applied succesfully to the experimental determination of SIFs in
notched plates (Theocaris and Prassianakis, 1980).

In the case of anti-plane (mode-I1I) deformation of a thick cracked plate
the middle plane of the plate is quite free from in-plane stresses and
therefore no change of refractive index occurs for the normal- to the
lateral-face direction. As a consequence, the classical methods of
photoelasticity, interferometry and transmitted caustics are up-to—-now
incapable to give any information for the evaluation of the intensity of the
stress— and displacement-fields around the crack tip.

However, the cylindrical curvature of the lateral faces of the thick plate
around the crack tip, induced by the w-displacements, formed a reflected
caustic envelope.

The procedure of determining the stress intensity factors, either for in-
plane, or out-of-plane crack problems for various cases, treated by
Theocaris and his collaborators from the early seventies up-to-now
(mechanically isotropic and anisotropic plates, stationary and propagating
cracks, static and dynamic loadings, cracked shells, V-notched plates,
interfacial cracks, interacting cracks, small-scale yielding in anti-plane
shear, Dugdale strip-yield-zone models, birefringent media, etc.) follows
the general lines: The parametric equations X(r,9), Y(r,9) of the caustic
are defined by introducing the respective expression of the deformed surface
f(x,y) of the specimen. Usually, these expressions are dependent on the
first invariant of the stress tensor and therefore can be derived from Egs.
(2) or (3), or analogous relations. Polar ccordinates are most convenient for
the calculations. The zeroing of the Jacobian determinant 3(X,Y)/3d(r,%)
gives the initial curve as r=r(9).

Introduction of this dependence of the polar coordinates to the parametric
equations gives the possibility of plotting analytically in a computer, the
respective caustic, for various types of loading and material parameters.
The latter is not necessary, but by comparing the shapes of the
experimentally and analytically generated caustics, one can check the
experiment, or the theory. Then, from the equation 9Y(d)/39=0, a relation
can be established between a geometric characteristic of the caustic
(usually the maximum transverse diameter Ypax) and the stress intensity
factor. Thus, with only one measurement of a geometric element of the caustic,
formed on a ground-glass reference screen or photographed on this place, and
by knowing certain constants of the model tested, one can evaluate
accurately the stress intensity factor.

Another advantage of the method of caustics is that no measurement of the
crack length is required, contrariwise to all the other optical methods.
Such a measurement involves certain difficulties, because the position of
the crack tip is not clearly identified.

Experimentally and analytically obtained reflected caustics are illustrated
in Figs.8a,8b and 9, for a mode-1, mode-III and mixed-mode cracks,
respectively, in an elastic isotropic plate.

Recently, special properties of caustic curves were derived, which are
important to applications of fracture mechanics (Theocaris and Pazis, 1981).
By using these properties of epicycloids, one can obtain, with a high
accuracy, the crack-tip-position in the image of the specimen and also can
estimate precisely the Ki- and Kyp-factors. 1n Fig. 9, the crack tip may be
defined as the section of the lines AA' and BB', which are perpendicular to
the pairs of parallel tangents cl,ei and sz,sé to the caustic, at a certain
position from the tangents.
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(a) (b)

Fig. 8. Caustics created around tips of a mode-I (a) and
mode-I1T crack (b).

uck
€ &

Fig. 9. Analytically obtained mixed-mode caustic and the
construction of its center by two pairs of
parallel tangents.

Then, tbe angle ¢ can be measured and the respective angle 9 on the initial
curve, i.e. on the plane of the specimen, is given by

4

8:

§¢ (18)
Th? angle w=arc.tan(KII/KI) of the inclination of the caustic with the crack
axis can be derived from the internal caustic (Theocaris and Joakimides,
1971). If the length AA'=D(9) defined in Fig.9 is measured, the K_- and
KII—SIFS may be given by 1

{KI} _0.093 _1 [__7VJM§)~k__:15/2{cosw}
L a zgde AS/Z | cos (8/4+n/10) ] cine

(19)

Fig.10 shows experimentally obtained caustics for a mixed mode crach

(a) (®)

Fig. 10. Experimentally obtained caustics for a cracked PMMA
plate: (a) construction of the center of the rear
face caustic from two pairs of parallel tangents
and the angle 2uw; (b) reflected rear and front face
caustics taken by a divergent laser beam
illuminating a very small area around the crack
tip.

In the case of mode-TI crack propagation in an elastic and brittle plate we
have from Eq.(3)
K_B
o,+0, = L 1 Z(Bz—Bz)cos(% /2) (20)
3 1 72 1
(ZKrl)

Using Eq.(15), the parametric equation of the dynamic caustic may be written
in the form
&(01+07) 9 (o

= + _— = +
X Axl ezodcj Bxl s ¥ Ayl ezodcj

+
1795)

3y1

(21)

where e=1, j=f for reflected rays from the front face of the specimen, e=1,
j=t for transmitted rays and e=2, j=r for light rays reflected from the rear
face of the specimen,c: are the optical constants of the material for each
case. The correlation of the dynamic SIF, with the maximum transverse diameter
of the caustic D?ax is given by the expression

1 max
_ 2021)° (Pt \5/2 1 29
Be = 372 \6___/ 7 7 (22)
ool -
3ezydA cy © WK B (B 8,)
where & is a correction factor, depending only on the crack velocity v for

a givenmmgtcrial (Theocaris and Papadopoulos, 1980) .

The method of caustic was applied to numerous experimental studies on dynamic
fracture by the author in the last six years (see for instance ,Theocaris and
Milios, 1980;1981; Theocaris and Georgiadis, 198331984) -

As a last example of the capabilities of the method to yield results in
complicated stress fields, we consider the case of a branched running crack
of Fig.11l (Theocaris and Pazis, 1983).
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In this experiment, after the
propagating crack has passed through

a slant interphase, it was splitted in
four branches. Equal in number caustics
are appeared in the photographs of the
high-speed camera, which yield the
intensities of the respective stress
fields. A comparison between Figs. 4
and 11, which illustrate bifurcated
cracks, shows clearly another
advantage of the caustic method over
the photoelastic method.

Finally, the inherent accuracy of the
method should be pointed out. The
caustics can be adjusted to correspond
to an infinitesimal region (and
regulable) around the crack tip, where
the elastic-stress singularity
completely dominates the stress field,
Fig. 11 . Photograph of a dynamic . whereas there is no deleterious
crack splitted in four influence of non-linear effect of the
branches after the core region. All other methods need to
passing of an inclined make measurements outside this region
interphase. for obtaining, first readable, and

then reliable data. This fact is well presented in the perfect hologram
shown in Fig. 3 , by Dudderar and 0'Regan (1971), where they mention that
their accidentally obtained caustic, formed in the close vicinity of a crack
tip, is considered as a region excluded from measurements. However, only the
method of caustics is capable to provide information in this region, which

is of much interest in fracture pechanics. Thus, the method may be considered
at least of one-order higher accuracy, than any other experimental method

and therefore is almost independent of higher-term approximations introduced
recently in the literature (Theocaris and Spyropoulos, 1982;1983; Rossmanith,
1980).

Finally, in problems of bending of plates and shells and all other cases,
where out-of-plane loadings are applied in cracked bodies, all other
experimental methods fail up-to-now to give satisfactory results, whereas the
method of reflected caustics has been extended with great success (Theocaris,
1979; 1982).
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