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ABSTRACT

Creep fracture is the end result of the accumulation of damage during creep. In
this paper, micromechanisms of damage are classified, and a methodology of
analysis is developed. For each mechanism, a damage-evolution law and a
creep-law is derived. The result is a pair of differential equations, with the
same form as that of the continuum treatment of Kachanov and Rabotnov. The
equations can be integrated to give the shape of the creep curve, the time and
strain to fracture, residual life, and so forth. Each mechanism exhibits a
characteristic shape of creep curve, with an associated Monkman-Grant constant
and creep ductility; these give guidance in selecting and using the appropriate
equations. Progress is made in unifying the continuum and micromechanistic
approaches to creep fracture, and a method is presented for identifying the
dominant damage mechanism (or class of mechanism) from the shape of the tensile
creep curve.

An overview of the contents of this paper can be obtained by reading Sections
1, 2, 3 and 5.
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SYMBOLS AND UNITS

o Tensile stress (MPa)

€ Tensile strain-rate (s™')
€ Tensile strain

T Temperature (K)
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INTRODUCTION
t Time (s) .

w, w w D Creep—damage is a term coined by engineers to describe the material degradation
o e S which gives rise to the acceleration of creep rate known as tertiary creep.
Yo Terminal damage It is the central concept in the mechanics of creep fracture developed by
é Initial sk N Rabotnov (1969), Hult (1974) Leckie (1977) and his collaborator.s from a
m nitial, or minimum creep rate (s™!) seminal idea of Kachanov (1958). The material is treated as a continuum and,
te Time to failure (s) since the detailed processes of degradation are not examined, assumptions or
€ Strain to fail postulates are made to describe the rate of damage evolution. The usual
f o failare assumptions (described in Section 3) have a certain generality which allows the
e Critical strain to fracture oxide resulting equations to be fitted to experimental data with a degkxl‘ee_ oi‘

b d i tructural observations or physica
Cm Monkman-Grant constant, Em te ::;:Zfsr,lgbut they are not based on micros
A Creep-damage tolerance, ¢&_/¢ t o
E Young' dul fmo T The material scientist studying creep is disturbed by this vague description of
A g's modiilus (GPa) damage. His unease is reinforced by recent attempts to model the growth of
G Shear modulus [GPa) holes or cracks during creep which can lead to equations which do not appear to
o € n c tants i _ resemble those of the continuum treatment. He is further concerned by the
_o' 0 onstants in the creep law, egn. (3.3) (MPa, s™', - ) obvious experimental fact that there are several mechanisms of creep-damage,
Wor M Constants in the damage law, egn. (3.3) sty - ) while the continuum equations appear to describe only one.
o ;
y Yield strength (MPa) If progress is to be made in developing a Mechanics of Creep-Damage, these two
b Work-hardening exponent approaches must be reconciled and the strengths and weakneﬁses of each
[ Th . recognized. The present paper attempts to do this by developing a gener_‘al
p reshold stress due to particles (MPa) methodology for the description of tertiary creep. Models for each mechanism
‘7; Initial threshold stress due to particles (MPa) are presented as illustrations, while acknowledging that, in many instances,
they are unrealistically simple.
9. Internal stress (MPa) y y P
H Hardening rate (MPa)
R Recovery rate (s™') CATEGORIES OF CREEP DAMAGE
Th Void radius (in boundary plane) (m) We distinguish four broad categories of creep-damage while recognisi_ng that
2% Void spacing (m) each may contain more than one mechanism. They are described in Sections 2.1
to 2.4 and illustrated in Fig. 1. Any one mechanism operating alone can cause
: Radius of cylinirical sample (m) final fracture or rupture. More usually, fracture is the result of the
r Particle radius (m) operation of two or more mechanisms, sometimes operating sequentially,
o sometimes simultaneously.
Es Initial particle radius (m)
le Particle spacing (m) Damage by Loss of External Section
o Initial particle spacing (m) Deformation at constant volume causes a shape change. During creep under a
L Slip distance (n) constant tensile load, the section decreases, stress slowly increases and the
creep rate accelerates (Fig. la and 1b). In the absence of other damage
f Volume fraction of particles mechanisms, failure occurs when the material necks to a point. Usually,
: A i i i d lead to failure at a
x Depth of internal i other damage mechanisms (discussed below) intervene an :
° S ELOSiECoR [y finite reduction in the area (that is fracture intervenes); but at very high
c Creck leaghh (m) temperatures (above 0.8 TM, where TpM is the melting point) pure mei?als and
d Grain diameter (m) solid solution alloys often rupture by this mechanism alone, as shown 1in
< Fig. 2. In compression, of course, the section increases and the creep rate
or Y% Dimensionless meterial properties falls; then the damage must be regarded as negative.
Y Surface ener of void (J/m?
- ) Damage by Loss of Internal Section
P Dislocation density (m™2)
a Y (a) Formation of holes at grain boundaries. The mechanism mostA widely
4 reengitank (reoghly + 0 studied experimentally and modelled theoretically is hole formation, or
K, XK', K A kinetic constant (m?/s) cavitation, either within the grains (Fig. lc) or at grain boundaries
° (Fig. 1d). Most commonly, the holes appear on boundaries which 1lie roug(hl)y)
(Fig. 1(d)).

Boltzmanns constant (1.38 x 1072% J/K) perpendicular to the maximum principal tensile stress direction
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Their presence reduces the section and so accelerates the creep and this, in
turn, increases the rate at which the damage grows. At low stresses the
damage is void-like; at high, the voids may link to give grain-boundary cracks

(Fig. 1d). Many pure metals and industrial alloys can fracture by this
mechanism alone (including the important nickel-base superalloys and the
ferritic and austenitic steels), though it is more usual for other mechanisms

. to contribute also. The holes take on a variety of shapes depending on their

spacing and on the temperature and strain rate. The characteristic appearances
of low and high ductility fracture are shown in the optical micrographs in
Figs. 3 and 4. The latter shows how damage mechanisms interact: cavitation has
terminated life in a material in which tertiary creep was due to degradation of
the substructure (see below) followed by necking.

(b) Growth of single dominant cracks. An industrial component often has a
spatially-inhomogeneous stress distribution which may result in the formation
of a discrete crack (often caused by localised creep cavitation), which then
generates an even smaller zone of damage around its tip (Fig. 1le). Growth of
these discrete cracks (Fig. 5) is thought to be important in thick-sectioned
components (found in electricity-generating and petrochemical plants) where the
system stresses are low and the design-lives are long.
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Eige Q. The four categories of creep damage: (i) loss of external
section; (ii) loss of internal section by voiding, or
cracking; (iii) damage by degrzdation of the microstructure; (iv)

damage caused by interaction with the environment.

Damage by Degradation of the Microstructure

alloys in service under load at
A

(a) Thermal-coarsening of particles. Many

high temperatures are deliberately strengthened by second—p.hase partlcl.e:.: % 5
intermetallics in aluminium alloys, carbides in ferritic an
During creep, these coarsen, or are replaced gra.dually by
can accelerate creep (Fig. 1f).
creep rate of the superalloy

in superalloys,
austenitic steels. {
more stable particles; both forms of ageing
Figure 6a shows how ageing accelerates the

Damage by loss of external section; necking to a point
tf = 353 h; courtesy

Fig. 2.
(pure aluminium, 375 C, 2.5 MPa,
T.B. Gibbons and R.K. Varma).

Fig. 3. Damage by loss of internal section: cavit.:ation in Nimonic 105
nickel-base superalloy with lead as a trace impurity (2.315 °C;

232 MPa, ef=9 %, R.A. = 9.6 %, ty= 1200 h; stress axis ver-

tical; courtesy G.B. Thomas).

The dominant damage
is sub-structural, but failure is caused by cavitation plus

necking (850 °C, 200 MPa, ey = 26 %. R.A. = 51 %,

te = 399 h).

Fig. 4. Damage in Nimonic 105 of normal purity.
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| en penetrates the metal
L IN738LC when stresses are high (approaching the athermal yield stress). At heated in an oxidising atmosphere, for, exazsi;;ceongide !ilhich remains intact
] low stresses, on the other hand, prior ageing has little or no change in creep (unless, of course, _it for‘m§ a p?otectlv:n reacts with impurities to give a
q00 rate, as shown in Fig. 6. And even in the high stress tests, the reduction in during creep). The 1m’,ard-d1.ffusl(r_lg) oxnégFi 8). 1In this zone, gas bubbles
Ji creep resistance due to aging was not sufficient to account for most of the zone of internal Oxldatlon'(Flg. 1 1. al:\ g;ecipitated solid oxide may act 8'\5
3 acceleration in creep rate observed during tertiary creep. Some other (CO2, H20) may form on grain boundarlesd, Zﬁepvoids degrade the strength within
mechanism is contributing simultaneously to damage accumulation. This lead us nuclei for voids. Both the bubbles an
to consider a second kind of microstructural change, associated with the the zone.
dislocation substructure. £5) . Damege by _feilure of exterel oxide. C{e?s fr(;ir;ur:;srupt an
. T i til i
(b) Substructure-induced acceleration of creep. Although particle-coarsening otherwise-protective surface fl-lm, by stralnil:ogm:etm‘;:l attack restarts at the
can account for some observations of tertiary creep without loss of section, it (Fig. 1(j) and Fig. 9). If it does, env rces for internal oxidation.
is unable to explain data for a large family of nickel-based superalloys (Dyson cracks, or spalls, which may also act as sou
and McLean, 1983). Here an acceleration of creep is associated with the way in ) . ined in more detail in Section 4. Some are well
which dislocations accumulate during creep. This is the least-well understood Each of these mechanisms is examined in mc ed only scant attention. For each
mechanism of tertiary creep. At present, two possibilities are worth serious studied and understood; O_the"S have 1Tece1dv scribing the rate at which damage
consideration. The first is that, at low stresses, well below yield : mechanism we seek to derl\{e an equail-on feor the rate at which the materiél
(o % 0.1 oy), dislocation motion is climb-controlled. The low mobility can accumulates, and an aSSOCla_ted equallinl describes creep in the material if
then lead to deformation which is limited by the density of mobile creeps. This pair of equations Comp} © el);sm is that of continuum creep—damage
kil dislocations: as this increases, the creep rate accelerates (Fig. 1g). The that mechanism operates aloqe. The forma
H second is that, at higher stresses (o % 0.5 oy), a cellular network forms mechanics, which we now review.
i (Fig. 7) which allows more rapid recovery, and an accelerating creep rate
(Fig. 1h).

| Damage by Gaseous— Environmental Attack

i a) Damage by internal oxidation. Exposure to aggressive gasses before or
i during creep often accelerates creep and reduces the life. If a component is

5}. IN 738 LC, 250 MPa. 850°C
O LL, 20U MPa. 600 C
®AGED 2th 0t 850°C

| 04GED 5000n at 850°C

& AGED 10000 at 850°C

X AGED 15000 h ot 850°C

nickel-based superalloy by

5 i i twork formed in a
Fig. 7. The dislocation netw 506 h.; courtesy

creep (IN 738, 850 °C, 270 MPa,ef = 6 %, tg =
P.J. Henderson, 1984).

L e
0 500 1000 TIME(h)
T l_f'\v\.c\»,. e TR

-IN 738 LC,170 MPq,850°C
"® AGED 2th ot 850°C

|- © AGED 5000+ ot 850

4 AGED 10000 h ot 850°C

X AGED 15000 h ot 850°C

STRAIN (%)
»

V) 1

o 5000 7000 TME®
Fig. 5. A creep crack in a creep-resistant steel (% % Cr Mo V steel
oC . i ickel

Fested at 565 °C; courtesy G.A. JeRsier). Fig. 8. Damage by internal oxidation (a) subsurface dagage in nic
I caused by internal oxidation (courtesy R.H; Bx(ﬂ;iklfleil i;l
it . Acta Metallurgica); inter
ﬁ‘ Fig. 6. Creep acceleration caused by ageing (IN 738 LC, 850 °C, D.A. Woodford, 1982, and Ac =4
|

250 MPa). Data from Tipler and Peck (1981). oxide particles at high magnification.



CREEP DAMAGE MECHANICS

The Continuum Formalism

Creep—-damage mechanics (Kachanov, 1958; Hult, 1974; Rabotnov, 1969; Leckie and
Hayhurst, 1977) has developed s a continuum-mechanical approach to the

analysis of creep fracture. In its simplest form, damage is measured by the
scalar'parameter w which varies from zero (when no damage is present) to one
(at failure). Both damage w ard strain € are assumed to grow with time in

a way which depends on stress 0, and on temperature T and on the current
extent of the damage w so that, for simple tension:

dw

gt =& (o, T, w) (
de 3e1)
-d_t =f (o, T, w)

The f:r'eep life, the strain to failure, and the shape of the creep curve are
obtained by integrating the equations between the appropriate limits. They can
be extended to include primary creep (Hult, 1974), multiaxial stresses (Leckie
and Hayhurst, 1977) when w may have to be treated as a tensor.

To proceed further, explicit functions are assumed for f and g. It is
common pra?t:che to represent the creep of crystalline selids by Norton's law.
Then the minimum creep rate ¢ is related to the tensile stress o by

dg _ & (240

35 = T e (3.2)
where ¢, is'a temperature-dependent creep parameter and n is a constant
exponerixt. This suggests (Rabotnov, 1969; Leckie and Hayhurst, 1977) the
following forms for the damage rate:

m
dw _ . ( S )
at = % o, (1T =) (3.3a)
de . ( o . (3.3b)
at = % 9 (1 - w))

Here w 1s a temperature-dependent rate constant (like éo) and m is a

constan .exporlent (like n). Note that the equations lead to a damage rate
d\{v/dt which is finite even when w is zero, and which increases monotonically
with w. Procedures for determining n, m, S and. wg are described by

Leckie and Hayhurst (1977).

Fig. 9. Damage by external oxidati
ion (courtesy Bara d P
and Gordon and Breach). Y - SRER, S
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The great attraction of this formalism is in its generality. Equations (3.3)

are easily integrated as a coupled set to give the shape of the cr‘ee;? curve,
and the strain to fracture €f (an example is shown

the time to fracture tf
or non-steady

in Fig. 10). The effect of stresses which vary with time, '
temperatures, can be computed (although true primary creep and transients

associated with stress or temperature change are neglected in the simple
egns. (3.3)).

We now introduce three important properties of the material: the Monkman Grant
constant Cp, the strain to failure er, and the creep damage tolerance, A .

The constant Cm (Monkman and Grant, 1956) is the minimum strain rate ¢q
(3.3a) from w =0 to

times the time to fracture tf. Integrating eqn.
w =1, at constant stress, gives:
1 Ec- o B
Cn = €m tf =(1+m)€:—_(o—) (347)

Integrating egn. (3.3b) gives the strain to failure €g:

( 1 ) E (O_)H_m (3.5)
T ' mr Ll -om oW o
o o
Finally, the creep damage tolerance, A, (Leckie and Hayhurst, 1977) is
defined by:
€
f m + 1
= = 8.6
A & t (m 4 1 = n) ( )

m f
At fracture, the strain is A ém te- The quantity by measure; theA tolerance
of the material to strain concentrations. Its value for engineering alloys
ranges from 1 to about 20. A low A is undesirable because cracks will

initiate at strain concentrations (like holes or changes of section) where the
local strain is larger than the general strain. A large A means that the
material can tolerate strain concentrations without local cracking.

We now seek to analyse the micromechanisms, describing each by a pair of
coupled equations like eqns. (3.3), and evaluating for each the quantities

Cpy €f and .

STRAIN

TIME (ARBITRARY UNITS)

Fig. 10. Creep curves resulting from the integration of egns. (3.3).
The broken lines show contours of constant damage (n = 4,

m= 5).



THE MODELLING OF CREEP DAMAGE

We have seen (Section 2) that tertiary creep, leading ultimately to failure,
can be caused by many different mechanisms. Here we analyse each, expressing
the damage-rate and the strain-rate in the form of egns. (3.3). This reveals
both the common ground and the fundamental differences between the continuum
and the microscopic treatments of creep-damage, and it suggests ways in which
the continuum method might be modified to include information about mechanisms.

The mechanisms can occur simultaneously. It is simplest to analyse them
separately, when one finds, often, that regimes of stress and temperature exist
over which one mechanism is overwhelmingly dominant, so that damage
accumulation is adequately described by taking it alone. But this is not
always true: the coupling of mechanisms can sometimes be of major importance.

Commonly, a single mechanism (like the diffusional void growth of Fig. 1d) is

dominant for most of the 1life, but final fracture 1is caused by the
intervention of a second mechanism (ductile tearing, involving extension of
voids by power-law creep, as in Fig. 1lc, for instance). Then the time to

fracture, but not the strain to fracture, can be calculated with acceptable
accuracy by assuming the first mechanism acts alone.

Damage by Loss of External Section

(a) Loss of external section without necking. When a bar creeps under a
constant tensile force F, its length will increase at an accelerating rate
because of the decrease in cross-section, A (Hoff, 1953, and Fig. 11). This

loss of section is a sort of damage. Define the damage by:

w, =1 - A/Ai (4 .1)

where Ai is the initial section. The initial stress is:
o=F/A,
i

where F 1is the tensile force. Then it follows that:

dw, n-1
— =i ()
dt mol - w, (4.2a)
n
1 (4.2b)
de = & (i)
dt !
These have almost - but not exactly - the form of egns. (3.3). Integrating

eqns. (4.2) gives the time to failure, tf, in terms of the strain to failure,

f
C =¢ t l[l—e)cp(—ne))
m m fn £ (4.3)
where the minimum creep rate, ¢ , is given by:
m
s D
€. ¢ Ey (g—) (4.4)
o

If ne >> 1 then g, ® 1/n and the creep-damage tolerance A is given by:

13

€
== f 4w (4.5)
€m tf
i i by integrating eans.
The shape of the creep curve 1is obtained ] : |
coupled set. In reality €f and A are infinite only in the special casihof
Newtonian viscous creep, as in the drawing of gla;s flt?r'es. .In alt'oh ez
cases, another mechanism intervenes. The most obvious is necking, whic w

(4.2) as a

consider next.

(b) Loss of external section with necking. In tension, steady—.state cree;l)l;i
intrinsically unstable. If one part of the sample has a slightly sr]rja °r
section than the rest, then the stress there is higher, t.he creep .rate ax;g .
and the difference in section is amplified (Fig. 12). This reasoning has ea
to statements that there can be no steady creep in tension; but the‘ r-ea.sonz:g
is incomplete. The proper question is not: when will a pfar.tur'b..atlortxj 1nl : z
section be amplified? It is: when will the rate of ampllflca-tl()l"l ) e t?%
enough to influence the creep rate, and the life of the sample, significantly?

is still not available. But approximate analyses (Harft,
1967; Burke and Nix, 1975) give a fairly complete pi.cture. .F].!‘St, the q;::;:lc?;l
of stability. A criterion for stable deformation in tens.,lon (Hart, l‘ t:‘e
obtained by considering the stability of a perturbation ) SA . in

cross-section of a sample of section A, made from a material w1th' cre?p
exponent n and strain-hardening constant h (so that work hardening 1s

described by 0y = OJoy exp he). It is readily shown (Hart, 1967) that the

perturbation does not grow, and deformation is stable, if:

A rigorous answer

h+1/n > 1 (4.6)

This result is consistent with two well-known limits. For a rate-independent
solid (n = =), the criterion reduces to that of Considere (1885). .For a
Newtonian-viscous material (n =1, m = 0) it predicts stable detjormatlon at
all strains. But it also indicates that a power—law creeping material (n > 1,
h = 0) is always unstable.

STREFSS ? 1

e b, —secTion A
=

_-SECTION A;

b

Fig. 11. Damage by loss of section.

Fig. 12. Necking in creep. Considerable strain is possible before
a neck first forms.



14

Experiments do not support this last prediction. Power-law creeping solids do
neck in tension, but they seldom do so at small strains; typically a creep
strain of 0.1 to 0.5 is necessary to create a detectable neck in a

cylindrical tensile sample. This is because, initially, the rate of

amplification of the neck is very slow. An approximate analysis by Burke and

Nix (1975) shows that the strain a: which necking first influences the creep

rate 1is considerable. Their numerical results for the strain ¢, at which
necking commences, can be re-expressed as:
2

L 1 (4.7)

after a time tn which we obtain from egn. (4.3) as:

-2n
-1

E t =
m n

} (4.8)

=R

{1 - exp ~

In thin sheet or wire, the onset of necking coincides, for practical purposes,
with failure. Then eqns. (4.7) and (4.8) can be regarded as defining the
failure strain € and time ty with the result that the creep damage
tolerance A is given by:

;‘__2“_%

s 2

For other geometries the strain between the start of necking and final failure
can be large; then Xo> 2, If the sample is short and fat, considerable
further extension is possible before final failure.

The treatment of necking is incomplete. To describe it properly we need

equations (like eqn. 3.3) describing the rate at which the neck grows, and its
effect on the creep rate. These must await further work.

Damage by Toss of Internal Section

Commonly, creep damage takes the form of voids or cracks, often on grain
boundaries. A void or a crack can grow during creep by the diffusion of atoms
away from it, or by the plastic flow of the material which surrounds it, or by
a combination of both. In this section, we review ideas about void growth.
The main points which emerge are these: that the damage and strain rates can be
expressed in the form of eqns. (3.3); that when the damage is large (w % 1)
the results are identical to those assumed in the continuum treatment; but that
when w is small, there are significant differences.

(a) Purely diffusional growth: boindary diffusion control. Hole growth
controlled by boundary diffusion alone, is shown in Fig. 13. Matter diffuses
out of the growing void and plates onto the grain boundary. If surface
diffusion is rapid, matter distributes quickly within the void allowing its
shape to remain near-spherical. The diffusion problem can be analysed with
more than enough precision for our purposes (Hull and Rimmer, 1959; Speight and
Harris, 1967; Raj and Ashby, 1975; Cocks and Ashby, 1982). The result is:

d

o LT W (4.9a)
dt o "o o w/z on (1/w,)

de o o 2%

at - % ¢o (E;) {d n (l/wz)} (4.9b)
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(w, = r]f,/lz); where & is

is the area fraction occupied by the void e

Here w

the spazcing of the growing voids, d i§ th.e grain shlze, lzr\lldant ¢gifoSion
temperature dependent material property which includes the re'd e e bl
coefficients (Cocks and Ashby, 1982). The growth of the voi

time
i i (eqn. 4.9b). (At the same 5
e (eqn. 4.9a) and also gives strain ; v
giﬁiﬁsiéngl flow, or 'Nabarro-Herring Coble'" creep, may also contrjlbu:;eze oo
creep strain, but when the void spacing is less than the grain ,

contribution is small.)

(the initial damage level), we find the initial strain rate:

wWhen wl = wi
- 2 (4.10)
e = ¢ ) (———FF7) .
“m o % (00) d &n (l/wi)
allowing ¢O to be eliminated to give:
en (1/w,)
M e M (4.11b)
= 1
e Y wé an (1/w,)
d B, W ) (4.11b)
€ .
dt~ °m {En (1/w,)
G - these
When w is close to 1, the term &n (1/w,) reduces to (1 w, ), and es
Z

w is
equations take on exactly the form proposed by Kacha‘nov. Bu:1 wk(liearr;a . zrate
sr?lall the damage rate is more complicated. In particular, t ('e sma%]_ e
decrer;\ses as the damage grows; and it is generally when w2 is

diffusional growth is important.

. . ) i
The time to failure (and the Monkman-Grant constant) is obtained by integrating

STRESS o

T T T STRESS o
IFFUSIVE SURFACE
P FLLL{!X DIFFUSION

4 5

t4t ¢t 4 : :/

T T —_—
ST -——— 2]

= - e’ ey

Damage by the diffusional growth of voids on grain boundaries.

Fig. 13. .
Whin boundary diffusion controls growth, the voids are roughly
spherical.

Fig. 14 The growth of voids on grain boundaries controlled by surface

diffusion. The voids are crack-like.
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egn. (4.11a):

w? (4.12)
where We is the critical damage at which some other mechanism, giving fast
fracture, takes over. Cn falls as both the density of voids and the grain

size increase. The strain €&y at constant stress, is given by simple
geometry (Cocks.and Ashby, 1982) by:

0~
Qe

g

Qe

Then the creep-damage tolerance, )\, is given by

A more precise calculation gives 1.5 < )\ < 2.5 when this mechanism acts
alone.

(b) Purely diffusional growth: surface diffusion control. Voids can remain
near-spherical only if surface diffusion across the void surface is rapid.
When it is not, matter flows out of the periphery of the void (by boundary
diffusion) extending the void in the boundary plane as shown in Fig. 14. Then
the damage-rate and the strain rate depend on both the rate of surface
diffusion and on that of boundary diffusion (Chuang and Rice, 1973; Chuang et
al., 1979; Cocks and Ashby, 1982). 1If, as before, we measure damage by the
area-fraction of boundary occupied by the voids, we find (Cocks and Ashby,
1982):

A vt z )2
— = T w R ras———
dt o o o (1 -w)
> % > (4.13a)
2 _a: y v L S ) k13b)
dt ~ "o Yo '3 do ‘o (1 - w.)
[e} 3
where Y is the surface energy of the material and VYo is a temperature
dependent parameter containing the surface diffusion coefficient (Cocks and
Ashby, 1982). As before, diffusional flow will contribute to the strain rate
if the grain size is small enough, but_we shall ignore it for the present.
Normalising by the minimum creep rate €n (that for which W, = Wi) gives:
dw, w %1l - w 3
_; 4o > (4.14a)
dt “m ax w.)(l—wz)
(4.14b)
w, %1 -w, 3
8 () (—2
dt m w, 1 - Wiy
1
When w; is near unity, these becoms identical with eqns. (3.3) (as before);
but when w, is small, the differences are significant. This result can be

integrated to give the time to fracture and thus the Monkman-Grant constant for
this mechanism acting alone:

: 8y %

Cm = *nm tf_ do (wi wc)

The strain to fracture at constant stress, €ps is just:

sf=em tf

-Grant
because the flat voids have negligible volume. Thus the Monkman

t e e t - e tolerance
"constant' decreases as the stress increases, and the cr‘eeP damag > == g
A is close to unity. This 1is a particularly damaglng mechanism giving
’

crack-like damage and low ductility.

A void can grow by power-law creep of the

. ow he en the
end of 1life, wh
15 T ards

(c) Void growth by power-law creep.

i i in Fig.
surrounding matrix as shown in / .
damage is large, this mechanism always, ultimately, takes over

i hby, 1979;
roximate methods (Edward and As :
e B, TEoRlL, T e the zone between the broken lines

ks and Ashby, 1982). In simple tension, t eoines

::cFig 15 exter’lds a little faster than the rest of the materlatl,aibr?'eda b; o
) = 2 it is constr

of (1/Q - w,)) , where w, = rp/%°. But i b Han

. . .
surroundings so that it dilates, causing the hole to grow in votl:umal,-‘d ey
increasing the damage w,. This growth rate leads to a damage rate

rate (Cocks and Ashby, 1982) given by:

iy 1 v (4.16a)
= € {-——5 - (1 - w,)}
dt m (1 - w)
2r? (4.16b)
d B g =Bl L]
dt m d (1 - w,)

o i
be e . 4 the
i ini m cree rate (eqn. 3.2) :oan ™ is i
as fore, is the minimu P .

is small, they differ

where €p, - 3
initial radius of the voids. When w, approaches ¥

reduce to the continuum result (egqns. 3.3) but when w,
from eqns. (3.3) significantly.

STRESS o STRESS o

STRESS o

b

Fig. 15. The growth of voids by power-law creep alone; such voids have
no special advantage if they lie on a grain boundary and are
distributed throughout the creeping solid.

Fig. 16. The growth of voids by coupled diffusion and power-law creep:
(a) creep-enhanced diffusional growth;
(b) creep-constrained diffusional growth.
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The time to failure is obtained by integrating eqn. (4.16a), giving, for
constant stress:

. 1 hE
= = 2
I S e w B ey ! (4.17)
and the strain to failure is simply:
& L _% 2 ( 1 )
T Sttt IvCg .

where w,. is the initial damage ani w. is the terminal damage. The creep
damage tolerance is: %
+ (h+ 1) wc2 &/d

A =1 + A 1
1

W ()

(n + 1) w,

i
at constant stress. When this mechanism acts alone, strains to fracture will
be large. In tension, the life is then limited by other mechanisms - usually,
loss of section and necking (Section 4.1). Materials with these

characteristics include the important 304 and 316 stainless steels.

(d) Void growth by coupled diffusion and power—law creep ('creep-assisted" and

""creep-constrained'). Experiments suggest that, frequently, voids grow by
coupled mechanisms. Figure 16a shovs one such case: matter flows out of the
voids by diffusion, plating onto the boundary nearby. This causes a 1local
wedging which, locally, unloads the boundary, removing the driving force for
further diffusion. But if the material further away (shaded) undergoes

power-law creep, then load is transferred back onto the region containing the

void. Growth then depends on a coupling of diffusion and power-law creep, and
is faster than by either mechanism acting alone. The problem has been analysed
for various goemetries by Beere and Speight (1978); Needleman and Rice (1980) ;
Cocks and Ashby (1980, 1982). The net result is that the void grows with a
shape determined by local diffusion (and thus is either near-spherical, or
crack-like) but with kinetics determined by the remote power-law creep (giving
a time to fracture which depends on o).

A second case is shown in Fig. 16b. If voids nucleate on some grain facets but
not on others, then a pair of grains which have voids on a shared boundary may
be surrounded by a shell of grains wiich are undamaged. The problem has been
analysed by Dyson (1976, 1979) who calls it "constrained cavity growth"
because, if the voids are to grow, the surrounding shell of grains must deform
also, and this requirement may restrict the growth: this time the growth is
slower than that by diffusion alone. But, as before, the voids grow with a
shape which is determined by local diffusion but with kinetics determined by
the remote power-law creep.

Both of these coupled mechanisms can be analysed; the results can be found in
the references cited already. For the present purposes we note that the values
of Cp, er and A which characterise them are intermediate between those of
the separate contributing mechanisms.

(e) Loss of section by growth of a single dominant crack. When the
creep—damage tolerance of the material is low, damage may coalesce to form a
single, dominant crack. A zone of more intense damage forms at its tip (within
which any of the previous mechanisms nay operate) and the crack grows into this
zone (Fig. 17). The damage is now localised, and the response of the sample
can no longer be described by continuous damage mechanics; instead, a
time-dependent J-integral approach must be used (see, for example, Wilkinson

and Vitek, 1982). This is a separate topic which we will not pursue here.
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pamage by Degradation of Microstructure

Tertiary creep is not always associated with J..oss of sect.lon. :;f;:e:;izﬁ
niloys which are particularly designed to ‘r:‘?slst rdei‘g;::ii:;zr} Tty Senmce
i i vitation o S
b clree\:;ler:llt:l?::araynycrzzini:fweii established. The damage _in this ca;e
‘ppearsk;:dyof time or strain-induced softening of the 'mat§r1al, and. ;s
:zsoiiated with changes in its microstructur’e.. This can-axl*lse(;r; twig‘;’ai:é bi
the thermal coarsening or dissolution of pr'ec1p1tatfe partlca:cs(ﬂeri;ion and by
the formation of a creep substructure which permits an e een . haugh Elie
creep rate (Fig. 19 and 20): it is really a sort of. pr'linatirtiary., ueh the

shape of the creep curve is like that of a conventiona

i i idi i there are no
engineering standpoint, these mechanisms can be insidious since

cracks or voids to indicate that damage has accumulated.

Most engineering alloys for use at high

i fine
temperatures derive an important part of their creep' streng:heliroman: Yl-
dispersion of particles: carbides in ferritic creep-resistant ste y \:,1 SR
in ?:he superalloys, are examples. At service temperatures, these s oleg'ation =
and the coarsening causes a gradual loss of streng:.h and l:nbeacct::e rizin ot

‘ ted that this cou
(Figs. 6 and 18). It has been sugges . ‘ o
tertiary ireep in these alloys (Williams and Cane, 1979; Bur};c tehte ::-Oijlem b),’
Tipler and Peck, 1981; Stevens and Flewitt, 1979). W; agprogc ltovs with o
ini i f dispersion hardene
mbining an equation for the creep o. :
ngcribiig the coarsening of the dispersion (Dyson and Mclean, 1983)

(a) Thermal coarsening of particles.

creep

There is an increasing body of experim.en.tal evidence t(rll-laa‘slir{umzt f':\‘la;:%iolngS§i)‘

that, from the early stages of decomposn:lo? onwards, et ve Mdoierpfns
rticles in precipitation-hardened alloys is almost constal €. N arcicles

Fc)zarsen with time, following the diffusion-controlled coarsening law o g

(1961) and Lifshitz and Slyozov (1961):

an _ K (4.21)
dt = 3r

so that the particle diameter after time t is given by:

r o= !‘30 + Kt (4.22)

STRESS o

STRESS o

t

NE OF
g;olMAGE -THRESHOLD
“ o = 4Gb
b =T

Fig. 17. The growth of a single, dominant crack.

Fig. 18. Damage by particle coarsening or dissolution. Either process

increases the obstacle spacing (%) and lowers the threshold stress op.
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Here K 1is a constant which includes the diffusion coefficient for transport
of‘ the material of which the particle is made, and r is the initial particle
51ze.‘ The spacing of the particles relates to their size through the volume
fraction so that ¢ increases with time as: .

27 = 20 (1 + K't) (4.23)

wl’.ler‘e I3 is the initial spacing and K' is another kinetic constant. It
mlghF be thought that creep would accelerate coarsening, but Gibbons and
Hopkins (1972), Martin and Doherty (1976) and Sauthoff (1983), who studied the
effect of creep flow on the coarsening of particles in a number of alloys
found the acceleration to be negligible. Then we may use the si};np,le
Wagner/Lifshitz law (4.22) to model particle coarsening during creep.

To do so, we require a modified creep equation which includes the effect of the

par‘t:}cles on the creep rate. The fundamentals of this problem have been
examined by Shewfelt and Brown (1974, 1977),Gibeling and Nix (1980) Arzt and
Ashby (1983), Petersein and Sauthoff (1983) and others. There is considerable

evider}ct.a that the creep rate of particle-containing alloys is well described by
a modified form of Norton's Law (Threadgill and Wilshire, 1974; Davies et al.
1973; Parker and Wilshire, 1975; Evans and Harrison, 1976): '

a - 0 n

E =ty (——B) b 240
%
where the threshold stress, Up, is close to the Orowan stress (Fig. 18):
Gb
9 X o = (4.25)

Herﬂ“e G 1is the shear modulus, b the Burgers vector and a a constant, near
unity. Assembling these results gives the time-dependent creep law:
n a© o n
E=¢ () 11— P
5 1
o €I + K" £)°?

(4.26)

o
where op = a Gb/4g-

We now define damage ws as a state variable, with the range (¢} to 1 (as
usual) such that:

wg = 1 L
s = L (4.27)
(1 + K' t)°
Then:
Gw g k1 )u K'
= - W —
dt 3 (4.28a)
de _ . g \n o n
3t = o ("o) (1= (og/0) (1 - ws)} (4.28b)
from which the time to fracture is:
1
t, ={———=, - 1} /K"
£ - wc)3 (4.29)
and the strain €p is approximately (for o >> 00):
P
S AN .
=55 Tk (% 300
[} c
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o - op
Bon = E —
m o pn

In this instance the minimum creep rate is, nof course,
s . -

/

o
N i 3l

50 that =L tr o (1 - Gg/d)n

if the stress is near the initial value of the threshold stress (‘S (as it

Now,
will be in any long-term test) the creep-damage tolerance is very large: 10 or
more.
These equations describe the effect of simultaneous ageing on Creep. The
effect is most marked at low stress levels (because the factor 08/0 is
then large). Changes in the initial particle dispersion (determining 08)

<] is independent of o.

have an important effect on creep rate, and

These qualitative ideas are supporated by the
Flewitt (1979), who tested the cast superalloy IN738LC, and of Petersein and

Sauthoff (1983) and Cane and Silcox (1982) who studied ferritic steels

containing carbides.

observations of Stevens and

But this not the whole story. Dyson and McLean (1983), in a careful analysis of
data for nickel-based superalloys, concluce that tertiary creep is not solely
a consequence of the coarsening of the ¥ particles but is due primarily to
another, quite different, way in which structural changes cause creep rates to
accelerate with time. The underlying ideas are that strain can increase the
mobile dislocation density, and that it can also enhance the rate of local
recovery. We term it "substructure-induced tertiary creep'.

STRESS © ReCoERYs”

WORK -HARDENING

STRAIN

DISLOCATION DENSITY RISES
T1-STRAIN =0

TIME

€apbv

EAL STEADY
INITIAL CREEP
RATE STATE

- -STRAIN = €

e |DENSITY:p é ‘, e
\éﬁté%%;\éyb &/ SUBSJSS%““E ¥ DiFrusion ¥

£~ APPARENT'STEADY
STATE

ol

Fig. 19. Accelerating creep caused by increase in mobile dislocation

density.

Fig. 20. Creep curves produced by increase in mobile dislocation
density (above) or the formation of a substructure (below) .

The curves are obtained by integratring equations given in

the text, with appropriate values of the constant and

- coefficients.

Fig. 21. Accelerating creep caused by formation of a creep-enhancing
substructure.
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itsbyowd acceleration of creep. During the creep of pure

i ‘s tons, dislocations move (giving creep strain) and the
;,.,;s, ivausing hardening). The creep rate is rapid at first, and th};n
Hi,im:,.«:’.,;‘,: As  the de:-nsit)" of dislocation§ increases, recovery ,mechanisms

] tums  slip, diffusional accommodation at cell walls etc.) 1
g—‘;;‘;mialxun, and the removal of long-range stress; as hardenin’ d I Svery
faten come into balance, the creep rate approaches,a steady-st f lue,  The
overall result is a "normal" transient, concave downwards yostate value. e

Ther i i i

oo ihairs‘eat;wo v;ays in whl.ch a different, concave-upwards, transient can occur:

ine oo ;gna ous t.ran51ent appears, on a creep curve, as a pseudo—tertiar‘;/
served in superalloys. The first relates to the density of mobile

ai X
BileE?tlons (Dyson and McLean, 1983). When a density p of dislocation with
g S vector b moves at velocity Vs the strain rate (Fi i i
bt ate ig. 19) is given

E= pb
v (4.30)
The velocity v depends on the effective stress a i
Z eff”
o =0 - a Gb vp (4.31)

eff

wh i i
StizientZE second term 1s'the internal stress due to the other dislocations As
cumulates, p increases; Alexander and Haasen (1968) show that: ’

do _ pv

T (4.32)

wher ; o : ;

a e:dSL is a characteristic slip-distance for multiplication. The behaviour

digl t_on L and the relation between v and Oeff. When (Fi 19)

requ(i)f.:dl?:)i rgove through a field of particles at stresses well belov%.that
rowan bowing (op = ¢ GbA ), as in superalloys, their motion

w::; beecli:p—limited. Then the velocity v depends, on a low power of Oeff.
quations (4.30) and (4.32) are integrated as a coupled set, with )
,

v = B i

dismcaﬁgi, b_théy gilve a creep curve with an inverse transient, caused by

sl 196—mo ility 1limited creep as shown in Fig. 20(a) (Al;exander‘ and
n, 9). The extent with a length that depends on the parameter L.

The formulati .

into steadyasltoarl:enj‘%le(:tsT;ec?'very; if that is included, the transient leads
= ow. e ''dam m i i :

dislocation density. age', in this case, is related to the mobile

At low streses (o % @]
! oy ), this offers an i
: st ) explanation
ﬁlilocatlon str‘uctu.re induced tertiary. But the obser‘vationps of Hende:sor thz
ei fan (_1983) a"c higher stresses (¢ % 0.5 o ) suggest a second OZI;'IEJH'I‘l
deseigz:l;ro]r;. fMlcrogziaphs of superalloys defor‘yned in creep (Fig. 7) sphow lth:
of a well-defined network of disl i e
o ‘ . ) ocations encasin each !
EUt é;i:otlt appears that, or? loading in the creep regime, dislgocations ;ove
ot can penetréte the particles, so they loop around them. The back stres
rom 1(es? lo.ops is _large and the creep rate falls. As straining proceeds s
oy orThc_) dlslocatlonls (like a cell wall) forms around each particle (F‘;L a
pam.: or t1hse xlztlvior‘k,lll:;ke the cells in pure metals allows diffusion from 056‘3
wa o another, relieving the back- :
cellular network provides a recovery nechanism SHEASRS enee formed, the

It is possible to illustrat i
oy ate this more formally. Let the creep rate be given

de 8 (0 B cj_ n
—— o
dt 0 o ) (4.33)
where 03 i i
i 1s an internal stress, caused by the back-stress from the
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but it is diminished by

non-deforming particles. It increases with strain,
recovery:
do., = Hde - R
i © —He oy 4 (4.34)
Here H is a hardening coefficient (with dimensions of stress), and R a
kinetic constant (with dimensions of s='). The first term describes the

hardening, and is independent of strain; the second describes the recovery and
increases the strain. The recovery rate depends on the internal stress (because
it is 0i which drives recovery) and the strain ¢ (because the density of
the network increases linearly with strain). When this pair of differential
equations is integrated numerically they give a creep curve which shows an

inflection from which the creep rate accelerates as the network forms, giving a
true steady state has not been

pseudo-tertiary (Fig. 20b). In fact, the
reached — it is approached at the end of the creep curve. The 'damage'" is the
network.

The reader may question the assumptions underlying the development of these
models for dislocation-substructure induced tertiaries. The important point is
that the creep rate depends on the mobile density of dislocations, and
on the recovery rate. Both evolve with strain and may lead to an acceleration
of the creep rate. The result is not a true tertiary; in the absence of other
damage mechanisms, they lead to a new steady state, not to fracture. But the
large increase in creep rate they produce may, in practice, constitute failure.
Both mechanisms accelerate creep (reducing ) but do not alter er (which is
determined by other mechanisms) so the value of A 1is large, typically greater

than 5.

simply

Damage by Gas-Environmental Attack

ssive gasses during creep generally changes
the rupture life and ductility. At low stresses and temperatures the creep
is often lower, and the 1life is longer, in air than it 1is in vacuum
(because the oxide has a higher creep strength). But at higher stresses or
temperatures, environmental attack accelerates creep and reduces life. The
low-alloy ferritic steels, for example, form oxides which spall, reducing the
load-bearing section and accelerating creep (Cane and Manning,1981). Nickel
and its alloys (including the superalloys) can suffer in a different way:
exposure to oxidising atmospheres before, or during, creep can increase the
creep rate dramatically and recuce both itne creep life and tite ductility (Tien
et al., 1976; Woodford et al., 1982; Pandey et al., 1984). It has been
suggested that this loss of life might be caused by void growth, enhanced by
extra vacancies injected at the metal/oxide interface as a by-product of the
way in which the oxide grows (Hancock and Fletcher, 1966; Caplan et al., 1980);
or that the loss of life might be due to internal stresses caused by the volume
change when surface oxide forms (Harris, 1978). Neither explanation is
consistent with the bulk of the experimental data (Bricknell and Woodford,
1982; Pandey et al., 1984), which point to internal oxidation as the cause of
We now examine these two mechanisms in more detail,

Exposure to air or to other aggre

rate

the enhanced cavitation.
starting with internal oxidation.

(a) Damage by internal oxidation. On heating in an oxidising atmosphere,
oxygen penetrates the component unless it forms a protective surface oxide
which remains intact even under creep. The inward diffusing oxygen reacts with
impurities to give a precipitate of an oxide: solid if the impurity is
metallic, gaseous if the impurity is either carbon or hydrogen. For kinetic
reasons, second phases of all kinds will usually nucleate more
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growth, and degrade the stren i
: gth (Woodford, 1981; Bricknell et :
Bricknell and Woodford, 1982a,b; Pandey et alj , 1984). ‘ Rleg T90ER

Tz;z zs§d for _the others. Consider the simplest case: a cylindrical sample is
ed in tension, at elevated temperatures and in an oxidising atmosphere (the

exten§1on t.:o the other geometries will be obvious). Oxygen diffuses inwards

| 1(“§a_1ct1r2xg with the most readily oxidised impurities, which precipitate as oxide;

‘ » 1g .2). The depth x of tk?is internally oxidised layer (Rhines, 1940;

| eljering and Druyvesteyn, 1947) increases with time (for x/R >> 1) as: '
dx K

at = 2x (4.35)

where K is a kinetic factor wiich includes the diffusion coefficients of

oxygen and of the im iti : ; -
ime purities The depth x then increases parabolically with

x? = Kt

If this zone of internal oxidation carries no load, then the damage w can be
7

defined as he area-fractio o o =Se on ic (53 OX on
tior f the cross c W in na a
td. in ¢ h ter 1 idati

i
i
|
i

R 2R R (4.36)

The load is carried by the remaining section, which occupies a fraction

v (1 - w;) of the section. Thus:
fy dw,
| e _. o __m (4.37b)
dt o o @ - w,)
o)
STRESS o STRESS o

0, _ CRACKED

“FILM

INTERNAL
OXIDATION INTERNAL
OXIDATION
<0,
gy : LSPALLED
~ FILM

0,

ig. 22. Damage by internal oxidation (or othe simi I
F t ther imilar penetration
b:y a reactive gas) o ' ,

g. . amage by external oxidatio ( \ e
Fi 23 D e t dation or attack b other aggressiv
) gg

é‘;‘zg\fentlz a.ndigrow more quickly on grain boundaries to give an array of
€s Or particles as shown in Fig. 8. Both act as nuclei for further void

This damage mechanism can be modelled and expressed in the standard form we
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The equations show that environmental attack can be expressed in the same
format as the other damage mechanisms. The difference is that the damage is no
longer a state variable, but (because the damage propagates inward from the
surface) depends on the dimensions R of the sample. Integrating the first of
these equations gives the time to failure when the mechanism operates alone:

RZw 2
C
YT T
It depends on sample size (for obvious reasons); doubling the sample dimensions
increases the life by a factor of 4. The strain to failure is obtained by
integrating eqn. (4.37b):
¢ R?
3 1 1
r T o (il( g =1=-gTg ! ma = 1M
B (1 - we) (1 - we)

The creep-damage tolerance ) is independent of R. It is unity when w. is
small, but rises towards infinity as w. approaches 1.

(b) Damage by failure of a protective oxide film. Some pure metals (such as
aluminium) form protective oxides, and many alloys contain components (such as
chromium) which oxidise preferentially to give a protective surface film.
During creep, the oxide film is stretched, and may fail (Manning, 1981; Riedel,
1982) as shown in Fig. 23. If it does, environmental attack restarts at the
cracks. Other, less protective oxides, may still impede the access of oxygen
to the metal surface, and again it is the cracking or spalling of the oxide
which permits further attack (Fig. 9) . In both cases, the rate of attack
is no longer controlled by the inward diffusion of oxygen, but by the frequency
of surface cracking; and instead of depending only on time (as simple oxidation
does) it depends also on the strain-rate.

Oxides generally creep more slowly than the metal from which they form. If the
section of the test piece is small then the oxide SUppresses creep and extends
life. In engineering components, it is more usual that the section size is
large compared to the oxide thickness. Then creep of the metal 10acds the film,
which fractures or spalls and carries little or no load. The details, of
depend on the alloy and the environment; but it is instructive to

course,
examine how the mechanism might be modelled, and the form of the resulting
equations.

Consider a brittle, external oxide, of thickness h; on the surface of a

creeping metal. The fracture strain (or spalling strain) of the oxide is ¢ *.

Creep of the underlying metal stretches the film until it fractures or spalls,
as shown in Fig. 23. This increases the oxidation rate locally until the crack
or gap heals again; the time constant for healing is t*. The time taken for
the new oxide film to crack is:

o= &
E
During this time, the film has grown (assuming parabolic kinetics) to a
thickness: o /@

where Kp is the parabolic rate constant (units: m°/s). If the oxide spalls
when it fractures, the rate of loss of thickness of the sample, dX/dt, is:

[N D S T (4.38)
dt  t* e*
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or, defining damage as the fractional loss of section, for a cylindrical sample
of radius R,

o %
dwg 2 (ZKp e)/z
dt ~ R e* (4.39a)
de . (=2 b (4.39b)
dt o g (1 -w)
[e]
Note that the loss of seétion is linear in time (at constant € ), even though
the kinetics of oxidation are parabolic. For samples of a constant initial
size, R, these equations have the form of the Kachanov equations (3.3), with
m = n/2. Integrating the first gives the time to failure for this mechanism
acting alone: 4
R & n/2
tf=“n+2(—ré){1—(l-wc) }
P m

The time to failure now depends on the sample radius (for obvious reasons).
The strain to failure:

€. X
R m 1
o2 w0 n_, M
. P (1 - w)1 ™~
from which: c
1 n -1
(1-w)2 1!
A=n+2 ¢
n-11-(1-w)n/2

c
Note that X is independent of R. It has the limit (n +2)/nY* 1 when w
is small, but increases towards infinity as wc approaches 1.

DISCUSSION AND CONCLUSIONS

There are many mechanisms of tertiary creep; some eight have been analysed
here, and there are certainly others. Each can be thought of as introducing
its own kinds of 'damage" into the material which accelerates creep and
contributes to the tertiary. Ultimately, one component of damage reaches a
fatal level and the sample fails. Damage mechanisms may interact: void-damage
may grow at first by diffusion, but later by power-law creep, for example; or
substructure-damage may cause the tertiary, but be interrupted by void-damage
or by necking to give a final failure.

We have considered the mechanisms in isolation, and have not yet attempted the
difficult problem of their superposition. With this simplification, we find
that each mechanism can be described by a pair of coupled differential
equations, one describing the rate at which damage accumulates, the other
describing the strain rate. When this is done, a close parallel emerges
between the materials scientist's view of creep damage and that which forms the
basis of the continuum theory of creep of Kachanov, Rabotnov, Hult and Leckie,
summarised in Section 2. In all cases, the response of the material is
described by a pair of differential equations:

dw

Frd £ oy Ty W) (5.1a)
de
Tt (o, T, w) (5.1b)
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where f and g are functions, explicitly given in. the text; for rdnagy
mechanisms f and g are well approximated by the f‘unc.;tlons (:?.3) asigme th)el
Kachanov and others. The time to failure tf is obtained by integra ing oy
first; the strain to failure ef and the creep damage toler‘ance,iour ,under
integrating the second. The shape of the cregp curve ar'xd the b_ehavlthe ol
varying stress and temperature, are obtained by integrating
simultaneously.

The great strength of the continuum, app.roach is its gener‘allty‘;lhi(:h 222
difficulty is that there is not one, but eight 'or‘ mor-e? mechanlsmsl s
potentially contribute to damage. Some are associated w1th.large va 111 5 e
and  eg, and are not intrinsically as dangerous as th.ose wllth lowlya :ions 14
and eg. Under the restricted conditions of most englnee'rlng app 1.c; o ir; .
is likely that fewer - perhaps only one or two - mechanisms cont;1 ucontinuum
important way to tertiary creep and failure; that rr}ay be why t ed A
method has been found useful in engineering practice. Bu.t tl:me ar;]in s o
assuming that a single mechanism is always domlnantv are .obv1ousi. a c liss 5
conditions which cause a change in mechanism will give lives which are
sometimes much less - than those predicted.

So it is interesting, from both a scientific and an engineering point of v1e\;lt,‘
to have some idea of the dominant mechanism of creep dam.age. One.r\:v:eyring
identifying a mechanism is by careful microscopy; but 1q an e:gln by
environment, this may be impractical.We have found that some informa 1;) oou
mechanisms can be obtained simply from the shape and scale of ;:e Cl:l O?
curve. The information is contained in the quantities Cp, Ef and y @ o
which can be read from a single creep curve for the material under‘f servthe
conditions. Figure 24(a) shows a diagnostic figure, constructed ér‘or)r: ;
information given earlier in the text. The axes are ef and Cp 4(= mn Af; -an
The areas show the regimes associated with each ‘class of mechan}sm. N
example: when creep occurs at constant stress, void gr‘owtl"l mechanlsmz 2er e
within the area delineated by A =1 and X = 2.5 (Sectllon 4.?). ) n e
more usual condition of constant load, the extent of this re_glol.'l t1hse I: Eted
because damage by loss of external section occurs at the same time; ! o bed
region illustrates this for a material with a st;ress expo_nent . nV;id .gFOWth
dashed line n =5, shows the effect of n :Am truncating 1}e ol i
regime. The chain line denotes the onset of neckl'ng at values_ o ' n e
5 and 10 (egn. 4.7) and thus separates the regimes )Arhere life 1sd erminated
by low A mechanisms from those in which necking may 1nter'.vene. If h:nism (e
test are plotted onto the figure, then an ide;a of the domlhantA mzc

one primarily responsible for tertiary and failure) can be obtaine .alloys "
Figure 24(b) shows data for pure iron, a steel and a r}umbeI‘ of superd meCh;nism
each case the prediction of the diagram agrees well with the observe

of failure.

i e
We believe that this information can be used to select the appropriat

i i i +3) r
constitutive law (a pair of differential equations 1like egns. (31.3, df?n
engineering design against creep. The basic continuum approach ou.t 136b 0
Section 3, is, we have seen, too simple. Each mechanism can be describe y

pair of such equations, but the detailed form of the equations depetr;]dss OYC\: the
mechanism, and it is this which determines the shape and‘sc.ale (and , uKaChran\r,mv
€¢ and A} of the creep curve. It may be that, empirically, the b o
equations (3.3) are flexible enough to describe gll shapes o‘f creep iure”(like
the effect of change of stress, or of specimen size, or .of mlc'r‘ostr'uc L:\C A e
grain size) which is explicit in the model-based equa‘tlons, is abse: :Lsnlm e
continuum approach. The next step, we believe, is to for‘mulahe eneial
modifications to eqns. (3.3) which incorporate, as far as possﬂalg, the g
features of the microscopic models, but which avoid their complexity.

AFR VOL 1-C



28

60
DIAGNOSTIC DIAGRAM
FOR CREEP FAILURE
50— DA?@S—:ERANCE/’ A=
= /
s 14
V40 MICROSTRUCTURAL ,
z DEGRADATION
g
9 30
&
2
=

N
o

0 5 0 15 20
Cm=€mts (x100)

60
DIAGNOSTIC DIAGRAM n=10 n=sf
FOR CREEP FAILURE /]
50| /
LOSS OF SECTION ]
AND NECKING
& MICROSTRUCTURAL
< L e DEGRADATION
e ©
=z
S ©
7 30 © AAA
w <
5 , 8 ® A N
= e o
z % s
p:S
> © NIMONIC 105,850 C NP L 1983
ok v = NIMONIC 80A,750°C (NPL 1983)
5 ¢ ¢ 2 IN 597,850°C (NPL 1983 )
2 AN 738 LGBS0'C DS (CAREY 1983)
8 &. (N ¥ (N 738 LC,850°C.CAST(CAREY 1983)
9 O IRON 500-800°C(FIELDS *ASHBY %)
5 . ; 5 C -MnSTEEL 450°C (NPL 1983)
0 5 .10 15 20
Crm = €mts (x100)
Fig. 24. A diagnosti i i
gnostic diagram, showing the combinations of E€f
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1 identification of mechanism, and the possibility of a change of mechanism,
i« of particular importance in applying the life-fraction "Robinsons" rule
(1o%2). If a single mechanism is dominant, and if the damage rate it causes
+an be expressed in a form in which the variables o and D are separated:

dw

Pl f (o) g (T) h (w) (5.2)

ihen the creep curve has a fixed shape (only its scale is changed by altering
the stress or the temperature), and the life fraction rule:

R S, | (5.3)

applies (Hult, 1974; Cocks and Ashby, 1982). Many of the mechanisms can be
expressed in the form of egn. (5.2), and for these, design based on

eqn. (5.3) is valid. But anything that changes the shape of the creep curve -
such as the appearance of a new mechanism - invalidates both eaqns. (5.1) and
(5.3). The shape of the creep curve is an indicator of mechanism; and of the
validity of simplifying laws like Robinson's rule.

Much further work is needed to complete the unification of the continuum and
the micromechanistic approaches to creep fracture. This paper has explored
routes by which it might be achieved, and demonstrated, we hope, that the task

is possible.
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