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ABSTRACT

The goal of high corrosion fatigue resistance can be reached only by alloys
which exhibit both, high resistance to pitting corrosion and high mechanical
strength. These two simultaneous requirements are difficult to achieve with
steels. One possible solution is given by the two-phase austenitic-ferritic
"duplex" stainless steels. This paper presents several other solutions as
well, e.g. titanium alloys and precipitation—hardened nickel base super-
alloys. Finally an overview is presented concerning the corrosion fatigue
strength which may be achieved with many other alloy systems.

KEYWORDS

Corrosion fatigue, fatigue strength, pitting corrosion, alloy development,
stainless steels.

CORROSION FATIGUE AND MECHANICAL STRENGTH

The fatigue 1ife of a component can be considered to consist of the number
of load cycles to nucleate a crack plus an additional number of load cycles
to propagate the crack to a size where the component fails. The number of
Joad cycles to crack initiation is often measured by S - N curves where the
applied cyclic stress is plotted versus the number of load cycles leading to
the failure of small axially loaded, smooth specimens. The residual number
of load cycles to failure of precracked components is often evaluated from
fracture mechanics corrosion fatigue crack growth rate data. The pre-

sent paper concentrates upon the nucleation of corrosion fatigue cracks ard
consequently the results of corrosion fatigue tests with smooth specimens,
j.e. S-N curves are discussed.
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Consider the fatigue of two carbon steels in air, figure 1. The two steels
have extremely different strength levels and, consequently, extremely diffe-
rent fatigue strengths in air, as indicated by the dashed lines in figure 1.
In aerated water, however, the corrosion fatigue strengths of both carbon
steels become equally low at 107 and higher load cycles to failure, as indi-
cated by the solid lines in figure 1. This then indicates that under the
conditions shown in figure 1, increasing the strength level alone cannot
increase the corrosion fatigue resistance. The data presented in figure 2
permit the same conclusion to be drawn for a large number of carbon steels
whith widely differing strength levels.

CORROSION FATIGUE AND PITTING CORROSION

The huge difference between fatigue strength and corrosion fatigue strength
at all mean stress levels seen in figure 3 originates from the role of
corrosion pits which act as crack starters as shown in figure 4. In order to
achieve higher corrosion fatigue resistance in steels it will therefore be
necessary to improve the resistance to pitting corrosion. Figures 5, 6, and
7 indicate how this can be achieved. The pitting potential of iron in aqueous
solutions depends on alloy composition, chloride concentrations and tempera-
ture. Chromium and molybdenum additions are particularly effective in
shifting the pitting potential into the desired direction ard thereby pre-
venting pitting corrosion and thus corrosion fatigue crack nucleation. How-
ever for the most aggressive concentrated hot chloride solutions, 12% to 16%
chromium are not sufficient to prevent pitting corrosion and thus corrosion
fatigue as indicated in figures 8 and 9. Higher chromium contents than 12%
to 16% are possible in modern straight chromium (“super"-) ferritic steels.
Such steels however cannot form martensite, and have thus relatively low
mechanical and fatigue strengths, as indicated in figures 10 and 11.

HIGH CORROSION RESISTANCE AND HIGH STRENGTH COMBINED

While the chromium content of martensitic stainless steel is limited, it is
apparent from the Shaeffler-diagram shown in figure 12 that much higher
chromium equivalents are possible with single phase (super-) ferrites and
single phase austenites as well as with two-phase ("duplex") stainless steels
of austenitic-ferritic microstructure. The single phase stainless steels have
low mechanical strengths in both, the ferritic and the austenitic types. This
translates also to low fatigue and corrosion fatigue strength,as indicated in
figure 13. All the more remarkable is the high fatigue and corr.sion fatigue
strength of the duplex austenitic-ferritic stainless steels shown in figures
13 and 14. This class of steels has the capability of being further strengthe-
ned either by precipitation hardening or by solid solution hardening.

A second approach to high corrosion resistance and high strength and thus,
corrosion fatigue strength, is indicatcd in figure 15. Here it is shown that
precipitation hardening of corrosion resistant Ni-Cr-Fe-Mo fcc solid solu-
tions can result in remarkably high corrosion fatigue strength.

Yet another solution to the corrosion-fatigue problem is presented by titani-
um alloys, such as Ti-6A1-4V, shown in figure 16. Since titanium alloys are
extremely pitting corrosion resistant, their fatigue resistance in air is

Fag.
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Fig. 2 The fatigue strength of carbon steels in air increases with

increasing tensile strength, but the corrosion fatigue strength
is equally low for all carbon steels in environments which
cause pitting corrosion.

practically identical to their corrosion fatigue resistance in hot concen-

trated chloride solutions. Care must be taken, however, not to increase the
strength of the titanium alloys to the range where they become susceptible

to stress corrosion cracking.

CORROSION FATIGUE RESISTANCE OF MANY ALLOY SYSTEMS COMPARED

Figures 2 and 17 indicate the maximum corrosion fatigue strength level which
can be achieved with carbon steels or aluminum alloys in salt water. This
maximum level of corrosion fatigue resistance is compared for many alloy
systems in figure 18. Note that cobalt alloys and titanium alloys permit some
of the best corrosion fatigue strength levels to be obtained. This is one
reason why materials from these groups are used not only in modern high
technology but also where their corrosionfatigue resistance is most immedia-
tely felt - as implants in the human body.
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Crack nucleation in corrosion fatigue
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Fig. 4 Corrosion pit as the nucleus of a corrosion fatigue crack. In

order to pre\_/enF corrosion fatigue, the most important step is
to prevent plltt1_ng gorrosion. This can be done by alloying, surface
protection, inhibiting the environment, or potential contrél
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Martensite formation (and thus the high strength of quenched and

tempered steel) is in straight-chromium stainless steels possible
only up to chromium concentrations which do not lead outside the

gamma-loop. Straight-chromium stainless steels with 18 to 28 per-
cent chromium are now commercial "superferrites" but they exhibit
no useful phase transformation and may also embrittle due to the

precipitation of undesirable phases at lower temperatures.

Fig.
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Fig. 12  The chromium content of martensitic stainless steels is limited.
Higher chromium equivalents are possible with (super-)ferrites,
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A high-chromium stainless steel with a duplex ferrite-austenite
microstructure has an unusually high corrosion fatigue resistance
Note the very modest environmental degradation of the fatigue
strength at all mean stress levels.
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Titanium alloy Ti-6A1-4V has a remarkable fatigue and corrosion
fatigue resistance at zero mean stress. However, at higher mean
stresses, such as may occur in service, the fatigue strength of
this alloy is less than that of 12% chromium steel (Fig. 8).

Fig. 17
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Aluminum alloys, arranged according to their yield strength.
Independent of the strength level, the corrosion fatjgue‘strength
is equally low for aluminum alloys if pitting corrosion is allowed
to occur. Compare the constant low corrosion fatigue strength level
of aluminum alloys shown in this figure with the parallel behaviour
of steels shown in figure 2.
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