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ABSTRACT

Preexisting defects and damage under load introduce additional inhomogenei-
ties that make analytical modeling of composite systems difficult. The non-
homogeneous and/or anisotropic character of composite behavior is load time
history dependent and invalidates many of the testing procedures developed
for the more traditional monolithic materials. Composite specimens even
though are simplified in terms of loading and geometric confiquration re-
spond inherently as structures. The relative response between any two com-
posite systems is case-specific and has to be validated through analysis and
experiment.

This communication addresses a number of topics that require scrutiny in the
prediction of composite material behavior and/or failure. The dominant flaw
model can yield useful information in situations where subcritical material
damage has a negligible influence on the energy released at incipient frac-
ture. Analytical modeling of interface behavior between fiber and matrix or
laminae is not always straightforward because load transmission from one ma-
terial to another is affected by stress state in addition to being material
dependent. Emphasized is the quantitative assessment of the dearee of local
inhomogeneity which can be measured by fluctuation of the strain energy den-
sity function, dW/dV. The local and global stationary values of dW/dV are
found not only useful for identifying the sites of possible failure and
yielding but also the stability of composite systems that depends on the
combination of loading, geometry and material inhomogeneity.

Composites being vulnerable to aggressive environmental changes can behave

very differently when the moisture and temperature conditions are altered.

Results are presented for a crack in T300/5208 graphite fiber laminate sub-
jected to moisture, temperature and stress boundary conditions. These in-

fluences can, in general, be coupled and lead to failure modes that are not
intuitively obvious.


User
Rettangolo


526
KEYWORDS

Composite materials, fibers, epoxy resin, defects, cracks, interface, frac-
ture toughness, inhomogeneity, anisotropy, laminate, moisture, temperature,
coupling, strain energy density, stationary values, system instability.

INTRODUCTION

Over the past two decades, composites have gained wide acceptance as con-
struction materials and load supporting members in both commercial and mili-
tary applications. An unique advantage of the multicomponent material sys-
tems lies in the added flexibility in design such that the mechanical, ther-
mal and electrical properties can be tailor-made to simultaneously match
multifaceted requirements. This is usually accomplished by embedding fibers
in resins and adjusting the volume fractions of the constituents and their
arrangements until the desired combination is obtained. Subcomponents such
as unidirectionally reinforced elements are first made and stacked in se-
quence to form a laminate structure. Hybrid systems involving two or more
families of reinforcing fibers are also becoming more common. The degree of
freedom gained in composite system design, however, is not altogether penal-
ty free. Inhomogeneity and anisotropy of the internal structure are more
readily reflected through composite materials as compared with the tradi-
tional monolithic materials. Defects and material damage in the form of fi-
ber breaking, matrix cracking and delamination are considered desirable from
the viewpoint of reducing the available energy to cause catastrophic frac-
ture. The complexities of subcritical local failure do introduce additional
uncertainties into the analysis, particularly when size of the defects or
irreqularities are comparable with the dimensions of the internal structur-
ing. Loading type and sequence can also seriously affect the rate at which
defects are created and grow. This load time history dependent process of
material damage controls the performance of composites, the quantitative as-
sessment of which is most lacking.

Despite the extensive research efforts in the past (Sih and Tamuzh, 1978;
Sih and Tarmuzh, 1981), the understanding of composite material behavior
lags far behind its need in application. Progress has directed mostly to-
wards improving manufacturing techniques and strength of specimens tested
under simple laboratory conditions. It has now become increasingly apparent
that the mere application of nonhomogeneous and/or anisotropic continuum
theories is hardly sufficient. Instead of emphasizing computational methods,
attention should be focused on establishing a rational approach supported by
theory. Failure concepts and specimen testing procedures developed for
homogeneous materials are not applicable to composites in general. The
translation of uniaxial test data to multiaxial stress states rely on homo-
geneity in stress field and material property and becomes questionable when
inhomogeneity is present. Stress state in composite specimens is inherently
complex even when loading is uniaxial. The internal physical structure of
composites is scaled such that their behavior is extremely sensitive to load
orientation. A case in point is the fracture toughness! testing of compos-
ite specimens. Material damage in multicomponent systems will not be domi-
nated by the energy release of a single crack. The creation of free surface
in fibers relative to the matrix dissipates energy and is load direction de-
pendent. The failure to account for fiber and matrix breaking in fracture

TFracture toughness (Sih, 1976) originally developed to characterize metal
alloys applies strictly to a homogeneous body whose uniaxial test properties
can be used to calculate the energy released for creating a unit area of
free surface at the onset of rapid fracture.
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toughness testing and calculation results in little useful information be-
cause the critical load would then serve the same purpose.

As in all disciplines of science and technology, there exists not a general
solution to all specific situations. Strictly speaking, all materials are
composites because the mechanical properties of their constituents are dif-
ferent. The grains in a polycrystalline metal alloy differ from one loca-
tion to another at the microscopic level. Their behavior, when character-
jzed under monotonic loading, can be adequately described through the macro-
scopic parameters such as yield strength, fracture toughness, etc., upon in-
voking the assumption of homogeneity. Microstructure effects, however, can
no longer be ignored when the loading becomes cyclic or is sustained on the
specimen for a long period of time as in creep. It is, therefore, the in-
teraction of loading with material microstructure that controls the damage
and hence the degree of homogeneity or inhomogeneity in a system. This com-
munication shall concentrate on several essential features of composite ma-
terial behavior that are in need of clarification and further advancement.
These areas may be outlined briefly as follows:

(1) Dominant flaw model

(2) Interface behavior in multicomponent system

(3) Assessment of material inhomogeneity

(4) Interdependence of moisture, temperature and stress

Analytical modeling of composite behavior has been problematic as it in-
volves the selection of material damage criteria. There is the widespread
tendency to empirically match analytical results with experimental data.

The agreements are short lived as the operational conditions are changed.

It is not uncommon to find several criteria? in explaining a single physicai
phenomenon. The lack of consistency in analysis explains why little prog-
ress has been made in the failure prediction of composite materials in the
past decade (Sih et al, 1973).

DOMINANT FLAW MODEL

Linear elastic fracture mechanics (LEFM) is the simplest material damage
model that addresses sudden global fracture initiating from a dominant flaw
or crack? although the body may contain a number of preexisting flaws. This
is partly because the discipline does not treat subcritical crack growth.
Such an jdeal situation can model those composite systems that fail suddenly
from an initial flaw or imperfection with neqligible amount of subcritical
damage. Experiments have shown that the onset of brittle fracture can in-
deed initiate from a single dominant defect or crack in fiber-glass rein-
forced plastics (Wu and Reuter, 1965), (Lauraitis, 1971) and (Lauraitis,
1971) and_graphite epoxy composites (Sih et al, 1975).

ZThe von Mises' yield criterion is usually applied to determine the extent
of plastic flow while a separate condition such as maximum strain, crack
opening displacement or other parameter is invoked for crack growth.

31t is theoretically possible to pose an ideal situation where the casei of
rapid fracture initiates from the tips of two separate cracks. Such a con-
dition should be excluded from reality due to the absence of perfect sym-
metry and load alignment.
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Scotchply 1002: Unidirectional Specimens

As mentioned earlier, the dominant flaw model concerns with the sudden re-
lease of energy in a unit volume of material that triggers global instabil-
ity. This concept will be applied to analyze the failure of Scotchply 1002,
a trade name by the Minnesota Mining and Manufacturing Company. It is a
unidirectional composite with transverse isotropy in the 2-3 plane. With
reference to Fig. 1(a), the 1- and 2-direction correspond, respectively, to

Line crack — f
n matrix

Line
crack ro * radius of
core reqion

(b) Enlarged crack tip reqion

o
(a) Angle loading on fiber reinforced compoiile specimen

Fig. 1. Matrix crack in unidirectional fiber reinforced composite
under angle loading.

the longitudinal and transverse fiber direction while the 3-direction being
normal to the 1-2 plane is not shown. The orthotropic elastic constants may
be obtained from (Sih and Chen, 1973)
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The definitions of the various constants in Eq. (1) are as follows:

Ef1 = fiber longitudinal Young's modulus,
Efz = fiber transverse Young's modulus,
Vf = fiber volume fraction,

V_ = matrix volume fraction,

%3]
[§S)
Ne)

fiber shear modulus,

e
bmo T matrix shear modulus,

(2)
P fiber Poisson's ratio,
do = matrix Poisson's ratio

The epoxy resin is isotropic and hence the matrix Young's modulus Em is re-
lated to u by E = 2u, (1+ m). For a 56.5% fiber volume fraction, E_

= 3.10 MPa and o, = 0.35, the properties of the glass fibers may be substi-
tuted into Eqs. (1) to yield

E] 34.47 MPa, 12 0.05

(3)

E2 = 11.51 MPa, o = 4.35 MPa

A defect or crack of length 2a is assumed to exist in the epoxy resin, Fig.
1(a). The fiber spacing 2h for Ve = 0.565 is very small in comparison with

2(a).This permits an asymptotic evaluation of the crack tip stress intensity
that will be given subsequently.

Failure Analysis

As the applied load o in Fiq. 1(a) is directed at an angle ¢ with reference
to the crack plane, the elastic crack tip stress field" involves both k1 and
k2 (Hilton and Sih, 1972):

ky = 2(1)nva sine, ky = ¢(1)~va singcoss (4)

in which ¢(1) and (1) for Scotchply 1002 are found to be
(1) = 0.290, (1) = 0.170 (5)

for the case h/a <+ 1. In view of Egs. (4), failure initiation will be gov-
erned by the combination of ki and k, and the crack will not extend collin-

early’. This invalidates the usage of the classical enerqy releas: rate ap-
proach that relies on self-similar crack growth. Reference is thus made to
the strain enerqy density criterion (Sih, 1973; and Sih, 1981) which has
been used extensively for analyzing the influence of defects or cracks on
composite material behavior (>ih and Chen, 1981).

The state of affairs in the immediate vicinity of the crack tip is excluded
from the analysis by the approrriate selection of a core reqgion with radius

"Refer also to the Appendix (Sih and Chen, 1973) for the evaluation of k,
and k
2-

“The matrix crack will initiate noncollinearly although crack propagation
may continue along the fiber after iritiation. Remember that onset of rapid
fracture concerns with only the instant at which energy is released suddenly
to extend a very small segment of the crack. What occurs therefore after is
beyond the scope of the analysis.
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e Fig. 1(b). Failure is assumed to coincide with the strain energy den-
sity function dW/dV in element with stress components Oy oy and Ty reach-
ing a critical value® (dw/dV)C‘ Since global instability is assumed to be
initiated by cracking in the epoxy resin, only a knowledge of (dN/dV)C for

the matrix material is necessary. MWithout loss in generality, a strain en-
ergy density factor S may be defined:

%-: ®
If r is taken as a fixed distance from the crack tip the element that trig-
gers fracture, it then suffices to consider? (Sih, 1973; and Sih, 1981)
= 2 2
S = aykf + 2a5kqky + apoks (7)
The coefficients a;; are functions of elastic constants and 6 as defined in
Fig. 1(b). According to the strain energy density criterion, the direction

of crack initiation may be determined by taking 3S/36 = 0 and finding o = 00
for which S is a local minimum. The condition of fracture coincides with S
= Sc' This yields an expression

S, = 0%aF(8,9,) (8)

The function F(B,eo) gives CH through aij (i,j = 1,2) as given by
= il ‘03 N
F(B,oo) 0.084 a;;sin“g + 0.049 a;,sin’fcoss + 0.029 a,,cos"*B (9)
For each B8, a corresponding angle of fracture 6, can be calculated from Eq.

(9). An approximate value of b = 55° is found for B = 30° which exhibits
the influence of material inhomogeneity on crack arowth direction.

Knowing® Sc = 9.63 N/m for the epoxy resin, Eq. (8) may be evaluated numeri-
cally for g @ and B. The results are compared to test data obtained from

®The quantity (dH/dV)C is the area under the true stress and strain curve at
fracture. For a linear elastic material, it can be computed from oS/ZE where

LY
J

Y is the ultimate stress. For nonlinear materials, dW/dV = c..dei. with

1] J

O e

%ij and €43 being the stress and strain components.

7For nonlinear materials, S can no longer be expressed in terms of the
stress intensity factors and must be reevaluated depending on the constitu-
tive equations under consideration.
8SC is related to K;_ by the formula
(1+v)(1—2\))K%c

SC - 27E
where K, = k J7. Hence, the standard ASTM method (Brown and Srawley, 1966)
applies also to the evaluation of S,
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precracked (Wu and Reuter, 1965) and uncracked (Lauraitis, 1971) unidirec-
tional Scotchply 1002 fiber composites in steel form. The specimens (Wu and
Reuter, 1965) contain central cracks in the matrix along the fiber direc-
tion. The solid curves in Fig. 2 show the variation of the critical stress
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Fig. 2. Variations of critical stress with crack angle for cracked
and uncracked Scotchply 1002 specimens.

9. with the crack angle B for five different half crack length a = 0.025,

0.051, 0.127, 0.254 and 1.295 cm. The open circles are the experimental da-
ta (Wu and Reuter, 1965) for a = 0.254 cm. Note that they agree well with
theory for large 8 and tend to deviate substantially as g is decreased.

This is because the analytical model considered only matrix cracking and
neglected fiber damage which becomes important for small 8. The dotted
curve pertains to the uncracked specimen data (Lauraitis, 1971) and match
closely with the theoretical prediction for a = 0.051 cm. This suggests
that even though the specimens were not precracked, brittle fracture initi-
ated from small defects in the epoxy resin. Indeed, microscopic examina-
tions (Lauraitis, 1971) revealed that small defects of the same size existed
in the material due to poor bonding and air-bubbles trapped in the matrix.

A plot of o versus a for 8 = 10°, 15°, 25°, 45° and 90° is displayed inFig.

3. The open circles are taken from the data (Wu and Reuter, 1965). The good
agreement between theory and experiment is more clearly exhibited forg = 45°
and 90° when the fibers are almost normal to the applied load. Deviations
increase when g8 is decreased as explained earlier.

Angle-Ply Laminate

The failure modes in angle-ply laminates are considerably more complex as
they may involve delamination in addition to those that occur in unidirec-
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Fig. 3. Variations of critical stress with half crack length in
Scotchply 1002.

tional fiber reinforced composites. Test results (Lauraitis, 1971) showed
that glass fiber laminates can fail by a combination of thru-lamina and in-
terlaminar (or delamination) cracking. These two modes tend to trade off
with one another as the ply-angle? is varied. Sih and Chen (1973) modeled
the laminate (Lauraitis, 1971) as a four-layered composite plate with
perfect bonding between the laminae with no loss in load transfer. This im-
plies that delaminationl® should be kept to a minimum with thru-lamina crack-
ing being the dominant mode of failure as observed by Lauraitis (1971) for
45° :_IB? < 90°. This laminate is also assumed to have lost its structure
integrity when one of the laminae has undergone rapid crack propagation.

Based on the aforementioned assumptions, the stress and failure analysis are
similar to those for the unidirectional case. Adjustment is made only on k]

and k2 as the load transfer to a through crack in a laminate is now differ-
ent. The results are shown in Fig. 4 which plots o, as a function of *8.

The five data points correspondina to 8 = +15°, +30°, +#45°, +60° and +75°
are those obtained by Lauraitis (1971) for a four-layered Scotchply lami-
nate specimen 25.40 cm long and 0.127 cm thick. The thickness of each ply
is approximately 0.0254 cm not counting for the adhesive layers. With half
crack length a = 0.076 cm, the theoretical prediction is good for g > 30°.

9 The ply-angle coincides with the orientation of the load with the fibers,
Fig. 4.

10The free edges on laboratory specimens tend to enhance delamination which
may not be realistic for structural components that are enclosed.
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Fig. 4. Critical stress versus ply angle for Scotchply 1002 fiberglass.
INTERFACE BEHAVIOR

It is now well-known that chemical treatment of fibers can greatly influence
the transfer of load across the interface of fibers and matrix and hence the
gross behavior of the composite system. A fundamental drawback of any anal-
ysis lies in not knowing the mechanical properties of the interface layer. The
standard approach is to assume a zero thickness dividing 1ine between two
adjoining materials and continuity of the displacement and stress field.

The material properties across the interface, therefore, take a discontinu-
ous jump from those of the fiber to those of the matrix or from one layer to
another in the case of a laminate. Such a condition, of course, is unat-
tainable in reality. There must necessarily be a finite thickness interface
layer within which the material properties change more gradually. Modelling
of the interface as a sum of many sublayers!! of finite thickness results in
a smoother transition. The dilemma is that interface properties are by the
definition, not measurable and yet they control the load transmission char-
acteristics which are stress and/or displacement boundary condition depend-
ent. The philosophy adopted here is to determine those situations where the
exact variations of the material properties within the interface will not
appreciably influence the gross behavior of the composite. In this way, the
interface may be easily modelled by the average properties upon which relia-
ble analytical predictions could be made. Designers should avoid those com-
binations of loading, geometry and material type where the composite behav-
ior is sensitive to conditions at the interface.

TIATthough additional interfaces are introduced for each sublayer across
which the bondings are assumed to be perfect, the errors are suppressed to a
lower scale level. The accuracy of any analysis stops short at a limiting
distance which in the continuum theory is microscopic in size.



534

Influence of Analytical Modeling

To illustrate the idea of this approach, four different loadings for an in-
terface between glass and epoxy I and graphite and epoxy II are considered
as shown in Fig. 5.

IR N R N

.
- :
Glass or Graphite +_ Glass or Graphite
4
® L
3 Interface f +" Interface
l\ Epoxy I or 11 B Eposy 1 or 11
3 J .
‘I 777777 7777
<
I
(o} fosding i 1 (b) Loading 11
N
S T TR G S N N A T
Epoay 1 or 11 H- Epoxy 1 or 11
Tnterface - Tnterface
N <
N Glass or Grapnite 1 6lass or Grapnite
N }
TTT77777777777 ;
(c) Loading 111 (d) Loading iv

Fig. 5. Four loading cases for dissimilar material system with finite
thickness interface.

The composite systems in Fig. 5 are such that ¢ = 2b and the interface
thickness § = 0.05b. Both the applied normal stress o and shear stress tare

set at 105 Pa while v is kept at a constant value of 0.3 for all materials

including that for the interface. Only the effect of variation in the
Young's modulus E is studied. The data (Sih et al, 1975) on E for the glass,
graphite and two different epoxy materials will be used and are given in Ta-
ble 1. The two composite systems are glass-epoxy I as one combination and

TABLE 1 Young's Modulus for Different Materials

Material E (x 10° Pa)

Glass 72.4
Graphite " 345.0
Epoxy I 3.10
Epoxy II 3.45

graphite-epoxy II as the other. As stated earlier, the interface is divided
into several finite layers!? with a varying modulus. Analyzed are four mod-
els for each material combination (Fia. 6). For both cases, Model I in Fig.

6(a) assumes a linear modulus variation with an average modulus of E ve equal

to the average of that for the adjoining materials. A less gradual variation

'°This is done in the finite eTement analysis such that a varying modulus
across the interface can be accommodated.
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Fig. 6. Interface models for glass-epoxy I and graphite-epoxy II
material combination.

of E is depicted in Fig. 6(b) for Model II. This yie1qs a softer average
modulus thgn Model I. gMode1 111 in Fig. 6(c) has a st1ff¢r average modulus
than Model I and a sharper initial rise in E. The variation of E for Model
IV pertains to that shown in Fig. 6(d). The convexity of the curve changes
while the average modulus is nearly the same as that of Model I.

demonstrate how interface modeling affects the failure of com-
égs?;ggt ?2 is necessary to establish a theoretical ba§1s for mak1ng pred1c—
tions. Since the strain energy density criterion app11§s to bodies w1th or
without initial cracks!?, it will be employed to investigate the possible
failure sites of the composite systems in Figs. 5. This requires the calcu-
lation of dW/dV in plane strain.

dW _ 1-v2 oy oy v(14) (10)
& = ze 1) - TE 1%

where 9 and o, are the principal stresses in the glass or graphite. Fa%;;
ure is assumed to occur when the maximum of the minimum dW/dV or (dl'l/dV)m-n
reaches the critical value (dW/dV)C. Although failure would most Tikely
first occur in the epoxy, only the (dw/dv)min values in the glass and graph-

i i is i ini id sizes are not
ite will be reported. This is because the finite element gri ] i

sufficiently refined to determine the minima of dW/dV in the epoxy since 1ts
modulus of elasticity is many times lower than that of the glass or graphite.

The values of (dW/dV)E?ﬁ in Table 2, however, suffice to illustrate the in-
fluence of interface modeling on failure prediction. Constant (dwW/dV) con-

T3The classical fracture mechanics concept applies only to systems with pre-
existing cracks.
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TABLE 2 Maximum (dW/dV) . for Glass-Epoxy I and Graphite-Epoxy I1 Systems
min

ax
(cm/dv)[;‘n.n (3/m3)

Loading Model Glass-Epoxy I Graphite-Epoxy II
Type Type
I 1 4.67 x 107 1.08
I 5.47 x 107 1.24
11 4.64 x 107" 1.05
v 5.51 x 107 1.29
1 I a.74 4.77
I 4.62 4.68
111 4.71 4.76
v 4.57 4.69
111 1 2.76 x 107 4.66 x 1072
v 2.11 x 107 4.88 x 1072
v I 5.07 x 1072 1.05 x 1072
v 5.99 x 1072 1.08 x 1072
tours are obtained to determine the magnitude and Tocation of (dw/dV)m?z.

Referring to Table 2, the largest values (dN/dV)min = 4.74 for the glass
and 4.77 for the graphite corresponded to the interface Model I and Loading
IT while the smallest values (dW/dV) . = 5.07 x 102 for the glass and
1.05 x 10'2 for the graphite corresponded to Model I and Loading IV. It
would appear that Loading II is more severe than the other loading cases.
For both composites tested with Loading I, the relative intensity of

(dN/dV)miﬁ is Tower for interface Models I and III than for Models II and

IV. Stiffening of the interface has the effect of delaying the onset of
failure in this loading case. In general, the interface modeling is shown
to have a large influence on (dl«l/dV)min and is particularly sensitive to

loading type. The orders of magnitude difference in (dH/dV)m?ﬁ

ble 2 exhibits this effect. Combination of materials also reacts with Toad-

ing. Refer to the work of Sih andMoyer (1972) for more details.

Cohesive and Adhesive Failure

Failure initiating from defects near the interface can occur in two ways
that may be distinguished as cohesive and adhesive failure shown in Figs.
7(a) and 7(b). Cohesive failure refers to an imperfect bond modelled as a
crack and an element of material is assumed to break off to the side in the
epoxy with elastic properties Mo and v_. The properties of the adjoining
metal are denoted by Y and Vo Figure 7(b) models adhesive failure with a
crack in the epoxy away from the interface. The critical stress o, corre-

sponding to crack extension will invariably be failure mode dependent.

shown in Ta-

~ Material Type
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Fig. 7. Cohesive and adhesive failure.

When a crack is located at the interface of two dissimilar mater1a1§, both
tiress intensity factors k] and k2 prevail even if the load is applied sym-

setrically with reference to the crack with 8 = 90° in Fig. 7(a). Rice
and Sih (1965) have shown that

_o/a [cos(elog2a)+2esin(elog2a)]

1 cosh(me)
(1)
ko = ova [sin(elog2a)-2ccos(e10g2a)]
2 cosh(me)

~the bi-elastic constant e is given by

1/y
2] “p/ipt v
€ = 2_71 10g[Kp/um+1/Up] (]2)

in which x_ = 3—4vp. The material properties of the epoxy and metal are

bioted in Table 3. Let r be fixed at 0.005a and it suffices to consider S
(1 the strain energy density theory which takes the same form as Eq. (7) ex-
cept that the coefficients aij (i,j = 1,2) depend on the elastic constants

and b Vm in Table 3. They have been obtained by Sih (1973). By

By Vp
TABLE 3 FElastic Constants of Epoxy and Metal

Poisson's Ratio Young's Modulus Shear Modulus
(MPa) (MPa)
Epoxy 0.35 310 1.15
Metal 0.22 68.95 28.27

iy

iabing the derivative of S with respect to o and setting the result to zero,

~_the directions of crack initiation are found for five different half crack
~ length a = 0.25, 0.51, 0.76, 1.02 and 1.27 cm. The critical cohesive fail-



538

ure stress 9. is then fourd by letting Smin = SC = 9.63 N/m for the epoxy.

The results are given in Table 4 and displayed graphically in Fig. 8. It is
seen that % decreases morotonically with the half crack length a.

TABLE 4 Cohesive Failure Stress for Epoxy to Metal Joint

Half Crack fracture Normalized Critical
Length a (cm) Angle Stress Energy Stress
6 _ (degree) Density Factor o (MPa)
. 2 16u_ S . /o%a ¢
Yp min

0.25 11.18° 0.939 8.62

0.51 14.85° 0.949 6.07

0.76 17..00° 0.950 4.95

1.02 18.52° 0.955 4.27

1.27 19.69° 0.958 3.81

The critical adhesive failure stress o may be obtained by first calculating
Smin for a cracked epoxy layer between two metals as illustrated in Fig. 9:

40-20,)
- 2 = VP
Smin = 211K 6, 92(1)o%a (13)

in which ¢(1) depends on h/a. The final results for h/a = 0.1, 0.5 and 1.0
are given in Fig. 9 for o applied normal to the adhesive joint. If a
= 0.25 cm, Fig. 9 yields acritical adhesive failure stress of O = 27 .89 MPa

which is considerably higher than the cohesive failure stress o. = 8.62 MPa

for the same crack size. This conclusion indicates that imperfect bonding
is much more damaging than defects in the adhesive layer. The curves in
Fig. 9 also show that adhesive failure stresses are sensitive to h/a ratio
for small defects.

MATERIAL INHOMOGENEITY

The interaction of load and material inhomogeneity controls failure. Sih
(1984)has discussed this effect in conjunction with the initiation of fail-
ure in polycrystalline metals under fatigue. The progressive deterioration
of a material element in fitigue can be attributed to the cyclic accumula-
tion of microdistortion in the weaker crystals which are surrounded by the
stronger grains behaving elastically as a whole. The nonhomogeneity from
grain to grain causes a fluctuation of energy in each unit volume of materi-
al, the magnitude of which is load time dependent. The amplitude and fre-
quency of this fluctuation can be used as a measure of homogeneity, a condi-
tion that must be satisfied in the standardizing of material properties
through testing. Quantities such as yield strength and fracture toughness
are measured under conditions where the load distribution and material mi-
crostructure are both sufficiently smooth and homogeneous at the macroscopic
level. This, of course, does not apply to fiber reinforced composites that
are highly inhomogeneous ard their overall properties collected from uni-
axial tests cannot be used reliably to predict the behavior of larger struc-
tural components subjected to different loadings. Composite specimens
should be treated as structwies in themselves. Homogeneity at the continuum
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level applies only to the constituents; namely, the fiber and matrix materi-
als

Defect Distribution

The general notion that defects or imperfectiozs teni toozigﬁinmgzi ;gigngg?
i i i i o cC T
solids is obviously incorrect. Metals are known ‘

?ths than single crystals because of the presence of grain Eou2da;1$?6um
Uniaxial tensile tests have shown, however, thgt the strengt ]0 a ; Thum
alloys can reach 500 MPa or higher while the s1$%1g ciﬁsta1igh321230d LA
3 ins no grain boundary may only have streng in e ne )
;ggta1¥he argument'is that dislocations are ?hen the cause of streag%S ggék
eniﬁg in the single crystals. This explanation does not gtr1ct1y ]?

Eause the strength of nearly pure aluminum becomes vanishingly small.

Strength, therefore, relies on the homoqengity arising from the_cgmg;ngg
distribution of load and defect. Undgr uniaxial tests, the Vi;1ad}s1oca—
disorder among the grains in a metal is ]E?S Epan ?haz g?oggvem:nts o en
ions in a single crystal. In a pure metal, e electr ] )
;;re chaotic og inhomogeneous. Strength must therefore be assoc1at§gtglfh
the first order degree of homogeqeity of @h? system Eiszggngz iagqify i
mined ener input rate. Composite ma@erla specime .
condition g¥ hoﬁoqeneity in metal testing and must therefore be treated ac

cordingly.

Energy Density Fluctuation

i i i : it volume of material to
he way with which energy is transferred from one uni T ) : !
;ngthei changes for each increment of loading. Energy dens1t{ d1str;bgﬁ;on,
say dW/dV, can be uniquely associated with material damage pattern a
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different scale levels depending on the size of the reference volume ele-
ment. Figures 10(a) and 10(b) show the relative size of the volume element
for a metal and composite compared with their internal structure. The nu-

Fiber Matrix Fiber

&

NN
A\

(a) Grains in a volume 2lement (b) Volume element in matrix or fiber

Fig. 10. Reference volume element size compared to internal structure
of metal and composite.

cleation and/or coalescence of pores in a single grain, the creation of mi-
crocracks in grains, and the separation of solids by macrocrack growth in-
volve interaction of energy transfer with material microstructure. Loosely
speaking, material microstructure becomes increasingly more important as en-
ergy transfer rate is lowered in the order of monotonically rising load, fa-
tigue and creep. In engineering application, an assessment of Tocal inhomo-
geneity with parameters than can be measured globally is essential.

As a rule, failure always initiates from the sites of material inhomogeneity
and/or load concentration. The energy per unit volume, designated by dW/dV,
will oscillate at these locations and possess relative maxima and minima.

They are designated as (dN/dV)max and (dN/dV)min and have been shown by Sih

(1973; 1981)to be related, respectively, to yielding initiation and fracture
initiation. Of particular significance is the physical interpretation of
the global and local stationary values of di/dV given by the pair

max max max max
[(dw/dv)maxjﬁ’ [(dW/dV)maX]g and [(dw/dv>min]ﬁ’ [(dN/dV)min g* The former
is concerned with yielding and latter with fracture instability. In what
follows, only (dW/dV) . will be discussed in connection with material in-
homogeneity. min

Interaction of Load and Material Inhomogeneity

The simple system of a single inclusion or foreign object with properties
E], 2 embedded in a matrix possessing different properties EZ’ Vo will be

considered. The interaction of load type and material inhomogeneity will be
demonstrated by subjecting the system to two different loading conditions
and varying the ratio E1/E2‘ The Poisson's ratio 1 and vy are taken to be

equal. Figure 11 shows the composite system that has finite boundaries 2h
% 2w. The uniform Load I has magnitude o and the linearly decaying Load II
vary as o (1-x/w). The ends of the inclusion are shaped elliptically with

semi-major and semi-minor axis a and b. The total Tength is denoted by 2c.
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Stability of the nonhomogeneous system can be assessed.thrqugh the length
parameter "2" that marks the distance between L and G in Fig. 11 such that
max

they coincide, respectively, with the Tocations of [(dN/dV)min]Q and
E(dN/dV)m?ﬁjg. The points L and G always 1ie along the prospective path of

failure. In general, there exists a multitude of 1oca! stationary values of
dW/dV. In two-dimensions, they can be found by referring to a set of local
coordinates, say at some point p(xj,yj) (j =1,2,...,n). The value of r;

can be fixed while stationary values of dW/dV are determingd with reference
to . Failure is assumed to initiate at the point of maximum [(dN/dV)min]i.

The global stationary values of [(dW/dV)min]g refer to a fixed coordinate

cystem, say xy in Fig. 11, the maximum value of which [(dH/dV)m?ﬁ]g deter-
mines the point G. This gives & that serves as a measure of the comb1ned‘
influence of loading type and rate, specimen size and geometry, and material
inhomogeneity on failure behavior of the overall system. For instance, the
rate of loading may be decreased to reduce £. This tends to localize fail-
ure that depends more on the material microstructure. A composite system
can thus be divided into many subregions and only those which uqdergo actTve
interaction with load and geometry require more detailed analysis. A ration-
al means of quantitatively assessing material inhomogeneity can be developed.

Consider Loading I in Fig. 11. Numerical values of 2 are found for o
= 689.5 MPa, E2 = 68.95 GPa while E1/E2 is varied. Mith values of w = 15.88

em, ¢ = 12.70 cm, b/a = 0.5, three different ratios of h/w = 0.45, 0.50 and
0.55 are considered. Plotted in Fig. 12 are the results of 2 versus E]/E2

(see also Table 5). The three solid lines are nearly straight except when
they reach the upper 1imit 2 = 3.18 cm corresponding to G on the boundary.
For E1/E2 <1, & increases or decreases with E]/EZ' The case of a notch is

recovered in the limit as E1/E2 > 0. Thus, reduction in E1/E2 and h/w re-

sult in more localized failure and enhances 5ubcrit1ca1 material damage. As
E1/E2 ~ 1, % approaches the entire ligament w-c and failure tends to be more

catastrophic as a greater portion of the solid is involved in the damage
process at a given instant.

A linearly decaying load shown in Fig. 11 as Loading I! is also analyzed.
The maximum peak 9 is 137.9 MPa and the other geometric parameters are the

same as those for Loading I. Figure 13 reveals that 2 does not increase as
rapidly with E]/E2 as in the case of uniform loading. The failure behavior

is therefore more stable. This is intuitively obviqus because the 1jgament
ahead of the inclusion experience a lower load magnitude. Table 6 gives the
numerical values of & for different E1/E2 ratios. Note that the values of 2

in Table 6 are lower than those in Table 5. These two ex§mp1es show that
failure mode stability in a composite system depends sensitively on load
type.

HEAT AND MOISTURE EFFECTS ON STRESSES IN COMPOSITES

High performance composite materials are now frequgnt1y used in air;raft and
aerospace structures that encounter aggressive environments in service. Sud-

den change in surface moisture and/or temperature can permanently alter the
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TABLE 5 Locations of Local and Global Stationary Values of Minimum
Strain Energy Density Function for Uniform Loading
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Length parameter t (cm)

1.52 L L .- L
0.1 0.3 0.5 0.7 0.9

Moduli ratio E‘/Ez
Fig. 13. Interaction of material inhomogeneity with a linearly decaying load.

TABLE 6 Locations of Local and Global Stationary Values of Minimum
Strain Energy Density Function for Linearly Decaying Load

2 (cm)

E1/E2 h/w = (.45 h/w = 0.50 h/w = 0.55
0.10 2.72% 2.778 2.858
0.1 2.802 2.858 2.934
0.12 2.883 2.937 2.996
0.13 2.946 3.016 3.068
0.14 3.018 3.089 3.150
0.15 3.09 3.149 3.175
0.16 315D 3.175 -

0.17 3.17 -

mechanical stiffness and strength of composite laminates. These effects!®
lead to fluctuation of stresses and strains as a function of time and inter-
act in a complex fashion with mechanical load, structural component geometry
and composite type. Depending on the rapidity of the transient boundary
conditions, heat, moisture and mechanical deformation can be coupled, an
area that has received little or no attention until recently.

T5The detrimental effect of stress corrosion in metals is now well-known.

2 (cm)

E1/E2 h/w = 0.50 h/w = 0.55
0.1 1.640 1.693
0.2 1.693 1.746
0.3 1.799 1.826
0.4 1.985 1.958
0.5 2.064 2.117
0.6 2.249 2.302
0.7 2.434 2.514
0.8 2.646 2.725
0.9 2.910 2.995
0.95 3.043 3.149

Sih and Shih (1983) have derived a hygrothermal theory of elasticity that
accounts for the interdependence of heat, moisture and mechanical deforma-
tion. The coupled governing equations for plane strainl® are given by

TSWhen diffusion and stress are coupled, the diffusion coefficients for
plane strain must also be distinguished from those for plane stress as in
the theory of plane elasticity.
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oc = 2C 3R
DVZC = 5% - } 53
(14)
g = R _,2C
DVER = 5§ - V 3t

in which C is the moisture concentration and R is associated with the tem-
perature T and a stress function ¥:

R=T+ Nv (15)

The function v takes the forn

Sk ‘%Ep [a(T-T,) + (C-Cy)] (16)

with Ik being the first stress invariant. The thermal and moisture coeffi-
cients of expansion are denoted by « and £, respectively, while E and v_ are

the Young's modulus and Poisson's ratio. There are a total of five physical
constants D, D, A, v and N in this theory.

Physical Constants

One of the main reasons why coupled theories of heat, moisture and stress
have not advanced is due to the lack of a knowledge of the physical con-
stants. Sih, Shih and Chou (19€0) have devised a method for extracting the
coupling constants by matching the coupled solution with the experimental
results on T300/5208 graphite epoxy for composite laminates. The values for
plane strain derived by Sih and Shih (1983) will be used:

0.0445 Kg/°Cm®

"

D = 2.440 x 1070 cn?/hr, 2

D =1.186 x 1072 cn?/hr, v

1.3439 °Cm®/Kg (17)

N = 1.1240 x 1078 °Cms?/Kg

n

The remaining constants o, £, Vp and E are

o

4.154 x 1072/, vp = 0.493
(18)
e = 3.591 x 107/vt#H,0, E = 75.933 GPa

Without going into details, only the variation of stress intensity factor
k] with the time parameter Dtt/d4 will be discussed where d is the specimen

thickness and Dt is a time scale factor chosen to be 1.0 cm?/hr.

Sudden Temperature Rise

Referring to Fig. 14, the surface temperature on an elliptically-shaped
crack [ with major and minor axis 2a and 2b is raised suddenly from 21°C

to 61°C. The relative huridity is kept constant at 75% RH. The conditions
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Fig. 14. Elliptical-like crack in a T300/5208
graphite/epoxy composite panel.

on the outer boundary T, with h = 3 cmand w = 4 cm is maintained constant

at 75% RH and 21°C for all time. Four different applied stress levels will
be considered. They involve tension and compression with o = +50 MPa and

;50? MPa. The sharpness of the crack measured by a/b is fixed at the ratio

th;, Sih and Shih (1984) have obtained results for the stress intensity
actor

1 g a
k1=70m/5=c/5[1+%0—t/%] (19)

where S is the local normal stress acting in the element shown in Fig. 14
and o is the crack tip radius of curvature. The stress o, may be positive

or negqtive dependiqq on the instantaneous combined influence of temperature
and moisture diffusion. Positive o applies to tensile mechanical loading
and negative o to compressive mechanical loadina. A plot of k]/o/E'versus

Dtt/d2 is shown in Fia. 15 for tensile loading of o = 50 and 100 MPa. Un-

coupling refers only. to noninvolvement of mechanical deformation. Tempera-
ture and moisture diffusion are always coupled in this discussion. The
Lraysient character of the solution is more pronounced at o = 50 MPa where
k] is seen to increase with time and then gradually approaches a limit. The

time dependency is overshadowed by the applied mechanical stress when o is
raised to 100 MPa in which case the curves are almost flat. Stress uncoup-
ling tends to yield conservative results for sudden temperature rise on the
crack as the dotted curves are higher than the solid ones in Fig. 15. The
51tuat1on is reversed in Fig. 16 if compressive mechanical stress is applied
with o = -50 and -100 MPa.

Even though the differences between the coupled and uncoupled results are
moqerate in the examples cited, they cannot be ignored in general. Sih and
Sh1h(1983)‘and Chou, Sih and Shih (1984) have shown in other instances
where cogp]1ng can significantly alter the results, both quantitatively and
qua]1tat1ve1y. The difference depends on load type, geometry and material
inhomogeneity. ’
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CONCLUDING REMARKS

Qomposites are multicomponent materials and nonhomogeneous. Their behavior
is complex because of the additional inhomogeneity introduced by defects
Fhat are created during manufacturing and can grow with load. Character-
1;ing composite specimen behavior under simple loading, therefore, serves
1ittle purpose in terms of gaining useful design information unless the

data can pe used to predict situations other than those tested. Local en-
ergy dissipation, depending on the rate of energy transfer in a unit volume
of material, can be used to identify failure mode. It is well-known experi-
mentally that loading rate alone can control material behavior changing
from elastic to elastic-plastic, viscoelastic or viscoplastic without alter-
ing the metallurgical or physical properties of the material. Permanent
material damage associated with defects at the different scale level must

be accounted for.

The establishment of threshold values of the strain energy density function
with different material damage modes is a concept that can be consistently
applied to explain the variety of composite material behavior. With the
advent of modern computers, the rate of material damage can be treated in-
crementally simply by nonlinear stress and failure analysis in tandem such
that damage is accumulated for each increment of loading. The constitutive
(e1ation for each material element can be derived accordingly without mak-
ing an a priori assumption as it is now done in the classical continuum
theory approach. Accumulative damage concept has already been incorporated
into the strain energy density theory and applied successfully to explain
the behavior of metal with strain hardening (Sih and Matic, 1982) and con-
crete with bilinear softening (Carpinteri and Sih, 1984). Application of
the dW/dV concept to composite systems is case specific because material
damage is strictly a load time history dependent process.
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