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ABSTRACT

Freund has shown that the reflectionless and static stress intensity factors are
equivalent when a semi-infinite crack propagates in an unbounded solid that is
subject to time-independent loads. The present paper clearly demonstrates that
the two factors are not equivalent when time-independent displacements are applied
to the unbounded solid. The view that a crack arrests when the crack tip stress
intensification factor, as determined by static LEFM procedures, attains some

critical value KIa’ is therefore not strictly correct, even in this idealised

situation. This result does not, of course, invalidate the KIa procedure's

practical usefulness, which relies upon the procedure giving arrest predictions
that need not necessarily be exact, but are accurate enough for practical purposes,
or better still are conservative.
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INTRODUCTION

In recent years, considerable attention has been given to the development of an
effective procedure for predicting the arrest (or otherwise)of a crack propagating
in an engineering structure. The current ASME Code procedure (1975) for
investigating crack arrest in nuclear pressure vessels is based on a linear elastic
fracture mechanics (LEFM) analysis coupled with the assumption that arrest occurs

when the static crack tip stress intensification KiT equals the so-called arrest

toughness value K__, which is envisaged to be a material property.

Ia
The usual basis for a general discussion of Mode I dynamic crack propagation, is
that the dynamic crack tip stress intensification factor K?YN is a function of the
crack length a, crack tip velocity &, geometry of the configuration, crack
propagation history, and the applied loads or displacements. If the dynamic
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fracture toughness KID is assumed to be independent of crack tip velocity, the

crack tip equation of motion is

K?YN (a, a, geometry, propagation history, applied loadings) = KID (1)

The analysis of a problem is clearly exceedingly complex; however, if it is
assumed that wave reflections do not reach the crack tip or alternatively their
effects are ignored, the analysis simplifies considerably (Eshelby, 1963; Rose,
19763 Melville, 1377) since the general equation (1) reduces to

Y
KD N

Kq = fI(a) K= K (2)

ID

where fI(é) is a known function of crack tip velocity and KI" is sometimes referred

to as the reflectionless stress intensity factor. It is important to appreciate
that the derivation of relation (2) is based on an exact dynamic analysis, even

though KI" is obtained by a purely static analysis; it can be expressed in the

form

KI = gla, geometry) KiT (35

where g is a function of crack length and the configuration's geometry, and may be
regarded as a "correction' factor.

For the special case where a semi-infinite crack propagates in an unbounded solid,
Freund (1972) has shown that the problem simplifies even further in that g becomes
equal to unity, i.e. the reflectionless and static stress intensity factors are
equivalent, and relation (2) reduces <o

DYN _ . ST
KI = fI(a) KI = KID (4)

Since fI(é) +1as a -~ 0, the crack arrests when the static stress intensification

ST
factor KI equals KID'

of crack tip velocity a, arrest occurs when KiT = KIm’ the limiting value of

KID(é) as a -~ 0). For this special situation, the ASME Code procedure gives exact

(For the general case where KID is an increasing function

arrest predictions and KIa’ the arrest value of K?T, is indeed a material property,

being equal to KID (or K__ if KID is velocity dependent). This particular result,

Im
albeit for a highly idealised situation, provides physical justification for the
KIa approach. However, practical situations differ markedly from this idealised

case, and the usefulness of the KIa approach then depends on whether it gives

predictions that are sufficiently accurate for practical purposes.

In the light of Freund's result providing a physical basis for the K__ approach,

Ia
the present paper focusses on the conditions that are required for it to be valid.

Freund has shown that KI" and K?T are equivalent when the loadings are time-

independent. To underscore this point, the present paper, by analysing specific

situations, clearly demonstrates that KI" and KiT are not equivalent when time-
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independent displacements are applied to an unbounded solid within which a semi- ]
infinite crack propagates. The implication is that the KIa approach is strictly

accurate only over a very narrow range; thus in applying the KIa approach to
practizal problems, it has to be logically argued that the KIa approach gives
arrest predictions that are sufficiently accurate for practical purposes or, better
still, predictions that are conservative.

THECRETICAL ANALYSIS
Figure 1 shows an unbounded solid containing a semi-infinite crack which lies along
the plane y = O, the initial position of the crack tip being x = 0, and the

position of time t being x = €. Suppose time-independent loads are applied to the

y

Crack tip position  Crack tip position
att=0 at time t

Fig. 1. The general model of a semi-infinite crack propa-
gating in an unbounded solid.

solid so that the tensile stress pyy along the plane y = 0 is pE(X) in the crack's
absence; furthermore assume that a normal pressure pc(x) is applied to the crack

faces when it is in its initial position. The crack propagates under Mode I

5 . . e . N . s
conditions and the dynamic crack tip stress intensification factor K?Y is given by

.

relation (2), with the reflectionless stress intensity factor KI" at time t being

given by the expression (Eshelby, 1969; Freund, 1972; Rose, 19765 Melville, 1977) @

b 2 A
K = 1< 2()dr (5)
I
i e-A
o

where p(A) is the tensile stress ahead of the crack tip when it is in its original
position at time t = 0. p(A) is given by the expression
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0
P = p () 4 L L = p(s)ds
T )_ (A-s) )
o
§ & L = pc(s)ds (8)
™ _m(A-S) A
whereupon relation (5) gives KIH as
€ o o
w2 pE(X)dx > pE(s)ds 5 pc(s)ds
K== —_t = —_t | = _ (7)
LAF ’E—k LES I ’E—S TS _LJETS

When the crack tip is at x = ¢ the static crack tip stress intensification factor
is given by the expression

3 o
KST _ jEZ pE(x)dx . 3 pc(s)ds 5
& T ’e—X ui €-s

when comparison of relations (7) and (8) immediately shows that KI“ = KiT for all

and KiT relies upon the structure of

crack extensions. The equivalence between KI

relations (6) and (8), and these are applicable only for a semi-infinite crack in
an unbounded solid subject to time-independent loadings; this conclusion is in
accord with Freund's result (1972).

The conclusion is not valid when specific points are subject to time-independent
displacements, as will now be demonstrated by consideration of specific models.
Suppose the faces of the semi-infinite crack -=<x<0, y = 0, at time t = 0, are
wedged apart by a distance h over the internal e (Fig. 2). For this loading

y

Crack tip position ~ Crack tip position
att=0 at time t

Fig. 2. The propagation of a semi-infinite crack in an un-
bounded solid due to the application of a constant displace-
ment to the crack faces over the interval -o<x<-aj.
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system, the stress p(}) ahead of the crack tip when it is in its original position,
is given by the expression

p(x) = (9)

4r(1-v2) a4 2 a45)2
o) -

where E is Young's modulus and v is Poisson's ratio. Equation (5) shows that the
reflectionless stress intensity factors for a crack extension e is

€

K&o= _Eh 2 d (10)
La(1-v2) m -\ 39_+ X 2_ ig 2
° 2 2

m/2
- Eh 2 de (11)
2m(1-v2) ma 1+ S sins
o ‘0 a
while the static crack tip stress intensification KiT, again for a crack
extension e, is
KiT - Eh (12)
—v2)
2(1-v*4) 2ﬂ(ao+a)
Relations (11) and (12) give
K';:(E)
—éT— zge) = 2 Ede (13)
K2 () T 1 + — sin?s
I a
o
2
= = K(m) (14)
™

where K(m) is the complete elliptic integral of the first kind with m = eo/(ao+€).

Figure 3 shows g(e) as a function of e/ao; for small crack extensions

gle) = 14— (15)
4a

while g(e) » = for large crack extensions.

For this model KI" and KiT are clearly not equivalent, except for the limiting

case where the crack extension is small (e>0); this example demonstrates the
point that equivalence is guaranteed only when time-independent loads are applied
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Fig. 3. g(e) as a function of e for the model in Fig. 2.

to the solid. The reason why KI“ and KiT

case considered, is that the pressure on the crack faces due to the wedge
displacement changes as the crack extends (assuming that the solid is in static
equilibrium at all stages), and the second term in relation (8) therefore changes.
In fact this term decreases, since the pressure pc(s) is given by the expression

are not equivalent for the particular

Eh
P (s) = a_yg a teyo (16)
¢ 4n(1-v2) j[-s +%-2—0} - [; J

for -w<s<0.

In the preceding example, constant displacements are applied to the crack faces,
but the same conclusion is valid when time-independent displacements are applied
within the solid's interior. Thus consider the case where a wedge of thickness h,
extending from x = & to x = + », is inserted along the plane y = 0; this wedging
action corresponds to the insertion of an edge dislocation with Burgers vector h
(Fig. 4). For this loading system, the stress p(A) ahead of the crack tip when it
is in its original position at time t = 0, is given by the expression

©

p(A) = 2L 1 /15 ds an
4r2(1-v2) 5 (As)(24s) A

1 for a crack extension e as

whereupon relation (5) gives K
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Crack tip position  Dislocation with
y at time t Burgers vector h
Crack tip position
att=0
—e f—x
- -
- I »
Fig. 4. The propagation of a semi-infinite crack in an un-
bounded solid due to the insertion of an edge dislocation
ahead of the crack tip.
e 4w
s Eh 2 s dsdn (1
! 4n2(1-v2) | n O+s)(24s) [ A(e-n)
A=0 s=0

Eh 2 1 =1, €
—_— £ cos = (19)
271(1-v2) " /2—5 /2

The static crack tip stress intensification K?T, again for a crack extension e, is

STee) = e far (20)
4m(l-v2) J2-¢

and it follows from relations (19) and (20) that

Ko (¢€)
é_T- = = g( €) = 2 COS-l £ (21)
K; (e) m 2

and clearly KI"(e) and KiT(s) are not equivalent. Figure 5 shows g(e) as a func-

tion of e€/%; for small crack extensions

gle) = 1 - 2 jﬁg ) (22)
Lt L

while g(e) ~ 0 as € » 4.
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Fig. 5. g(e) as a function of e for the model in Fig. 4.

DISCUSSION

The preceding section's analyses clearly demonstrate that the conclusion (Freund,
1972) regarding the equivalence of the reflectionless stress intensity factor

= ; 5 : S c e e s
KI and the static stress intensity factor KIT for a semi-infinite crack propagat-

ing in an unbounded solid, is valid only for time-independent applied loads; it is
not valid for time-independent applied displacements. Arguing that crack arrest
occurs when KI" = KID if the dynamic fracture toughness is independent of crack

velocity, (and when KI = Ko the limit of KID

toughness is an increasing function of crack velocity), the implication is that
the simple K__ arrest procedure, i.e. that arrest occurs when the static stress

as v > 0, if the dynamic fracture

Ia
5 i 2 ; ST ‘ ‘i . s +
intensification factor KI attains a critical value, is strictly valid over only

a very limited range of situationms.

Reccgnising that a finite crack size, the presence of surfaces and wave reflections
are all factors that will tend to invalidate even further the strict equivalence
between KI" and K?T, it follows that use of the ASME Code procedure (1975) based on
the KIa approach must be coupled with arguments which demonstrate that the KIa

procedure's arrest predictions are likely to be sufficiently accurate for practical
purposes. If such arguments can be developed, the approach is obviously extremely
powerful, primarily because of its inherent simplicity. One way of proceeding

is to limit the application to situations where wave reflection effects can be
shown to have negligible effects. Thus if a pressure vessel of a water cooled
reactor is subjected to a hypothetical loss of coolant accident (LOCA) and the
emergency core cooling system (ECCS) injects water into the vessel, when the
thermal stresses might propagate a crack into the vessel wall, wave reflections are
minimal when the growth increment is small (Marston, Smith, Stahlkopf, 1978, 1979).
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A reference model analysis may then be conducted, the objective being to show that
the KIa approach gives arrest predictions that approximate to those obtained on the

basis that the reflectionless stress intensity factor KI" attains a critical value

KID' Having demonstrated an approximate agreement, the simple KIa approach may
then be confidently applied over a range of similar situationms. In other words,
the KIa procedure can be used as the basic crack arrest procedure, and a limited

I
sufficiently accurate, or better still, are conservative.

number of K_ analyses are performed to ensure that the KIa predictions are

CONCLUSIONS

When a semi-infinite crack propagates in an unbounded solid, the reflection-
less stress intensity factor and the static stress intensity factor are not
equivalent when constant displacements, as distinct to constant loads, are applied
to the solid.

The range of situations for which the K__ crack arrest procedure is strictly

Ia
valid is therefore very limited. Accordingly the logical way of using the KIa

approach in practice is to develop arguments to show that its predictions are
sufficiently accurate, or better still, are conservative.
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