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ABSTRACT

The steady state stress and strain fields near the tip of a stably growing crack
subject to plane strain tensile opening loads in a ductile material have been
determined using finite element analysis. The results, for small scale yielding,
pertain to strain hardening materials as well as to the non-hardening model of
plasticity. In the perfectly plastic material the near tip stress field is ap-
proximately that of the Prandtl punch problem except for a fan-shaped elastic
region behind and emanating from the crack tip. This elastic region has been
predicted previously by Rice, Drugan and Sham (1979) through an asymptotic
analysis.
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INTRODUCTION

The stress and strain fields near the tips of growing cracks in ductile materials
are known to differ from the stress and strain state around stationary cracks in
the same materials. Rice (1975) deduced that the strains ahead of a stably
growing crack in plane strain in an elastic-perfectly plastic material are pro-
portional to the logarithm of the distance r from the crack tip. This contrasts

with the r_l strain variation for stationary cracks. Later, Rice and Sorensen

(1978) further analyzed the problem by noting that in such materials the stress
fields in the crack tip plastic zone must be composed of constant stress regions
subtended by the crack tip within which the plastic strain rate is proportional

tor l. These regions are well understood since they also compose the stress
field of the plane strain punch indentation problem of Prandtl as discussed by
Hill (1950). An inconsistency noted by Rice and Sorensen in their analysis is
that a velocity discontinuity on the boundary between the fan and the trailing
constant state region produces a negative plastic work. This feature was remedied
by Rice et al. (1979) who introduced a sector of elastically straining material
between the fan and the trailing constant stress region. This sector, also a fan
emanating from the crack tip, lies between 115° and 163° from the direction of
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crack propagation for Mises yield condition and Poisson's ratio v = 0.3.

The problem of stable crack growth in plane strain has also been studied through
finite element calculations. Sorensen (1978) imposed boundary conditions compa-
tible with small scale yielding in mode I (tensile opening loads) on a mesh of
elements of elastic perfectly plastic material subject to von Mises yield condi-
tion with an associated flow rule. The crack was advanced by progressively un-
loading nodes ahead of the crack tip, The stress state that developed near the
crack tip was essentially in accord vith the Prandtl field. No elastic fan was
observed at the crack tip, although Rice et al. (1979) later observed that this
region might only be resolved by a very fine mesh since the stresses in the
elastic sector do not differ. greatly from the stresses that would be present in
the complete Prandtl field. Dean and Hutchinson (1979) used a different approach
for the problem. The crack was considered to be growing continuously but the
finite element mesh was convected along with the crack tip. The boundary condi-
tions applied to the mesh imposed a remote dependence on the mode I elastic stress
field. An iterative scheme was used to determine the steady state stress and
strain fields around the crack tip. In this case essentially the Prandtl field
was again observed round the crack tip for the elastic-ideally plastic material.
However no elastic fan was observed at the crack tip.

We have also carried out finite element calculations using the method employed by
Dean and Hutchinson. Our results are essentially in agreement with those of

Dean and Hutchinson for plane strain mode I as to strains and stresses ahead of
the crack. This is so for the perfectly plastic material as well as for strain
hardening materials. However, our results include evidence for the presence of

a trailing elastic sector in the solution for the perfectly plastic material.

FINITE ELEMENT CALCULATIONS

The finite element method was used to determine the steady state stresses and
strains around a steadily moving crack in plane strain. Small scale yielding con-
ditions were enforced and in one set of calculations the Prandtl-Reuss equations
were used for the constitutive law (i.e., von Mises yield criterion with associ-
ated flow rule). The uniaxial stress-strain curve in the plastic range was

chosen as a power law in which
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where o is stress, cy is the tensile yield stress, G is the elastic shear modulus

and €P is the plastic part of the strain. In another set of calculations a con-

stitutive law that accounts to some extent for the formation of vertices on the
yield surface was used. This law, due to Christoffersen and Hutchinson (1979), is
based on deformation theory for almost proportional loading at the yield surface
corner but includes a continuous and smooth approach to elastic unloading as the
direction of stressing becomes tangential along the yield surface. The vertex
follows the stress point, unless complete elastic unloading occurs. The soft
response at yield to stress increments orthogonal to the stress vector is designed
to approximate the behavior found in models for yielding of polycrystalline metals
such as Hutchinson's (1970). The deformation theory used for the calculations
exhibited the same power law hardening as the flow theory law.

The finite element formulation that was used is based on the principle of virtual
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of strain hardening (N = 1/3). The converged solution for this material was used
as the starting estimate for the calculation for N = 1/5 and so on until the
perfectly plastic result was obtained.

RESULTS AND DISCUSSION

Our results for the flow theory material agree quite well with the equivelent
solutions produced by Dean and Hutchinson (1979). For example, the opening
profiles of the crack surfaces in Fig. 1 are close to those presented by Pean

and Hutchinson. We find that our results for perfect plasticity can be fitted ;o)
the asymptotic formula suggested by Rice and Sorensen (1978), Eé/cyr = B log(eR/r

with B8 = 5.808 and R = .166 Ki/o;. In this expression § is the crack opening,

E is Young's modulus and e is the base of the natural logarithm (log)é gean
22 = = there

and Hutchinson suggest B = 4.28, R = .71 Kl/cy or B = 5.08, R .28 KI/oy, e

being not much difference locally in the curves generated by these alternatives.

The stress field for perfect plasticity is shown in Fig. 2. This is compared to
the stress field calculated by Rice et al (1979) that includes the effgct of the
elastic sector at the tip. Although the agreement is by no means precise, there
are indications that the finite element solution tends to fol}ow Fhe sFress §tate
predicted in the elastic wedge. That there is elastic unloading in this region
can be seen in Figs. 3-5 which show the active plastic zones ar?und tbe c?ack

tip for N = 1/5 and 1/10 and for perfect plasticity. The elastic region is

more obvious in the case where the stress strain curve is steeper. However, thg
wedge does not emanate from the tip but rather from one element dow?stream. This,
we believe, is due to the discrete formulation in which the crack tip cannot be
said to lie precisely at a point (although in our discussion ?f the mesh layout
and in the figures we have ignored this detail)f The kinematics of the mésh also
thrusts much shear strain into the element immediately behind the crack tip. In
the perfectly plastic solution the elastic wedge is somewhat.ob§cured by the fact
that between some integration stations the increment of strain is composgd of

a part that is entirely elastic followed by a part that is elastlctplaﬁtlc.

These elements are designated partially active in the figures. This klnd'of par-
tition of the strain increment is possible due to the Rice-Tracey (1273) integra-
tion procedure which avoids designating an increment as wholly glast1c or wholly
elastic-plastic based on the direction of the strain rate. It is clear thaF a
number of elements in which this partial unloading or in which total un%oadlng
takes place in the perfectly plastic case are concentrated in the elastlc' e
unloading sector from 115° to 163° predicted by Rice et al. (197?), espec1a}ly i
the fan is taken as being focused one element behind the crack t1?. We believe
that a finer mesh would accentuate this feature of elastic unloading, as was
suggested by Dean and Hutchinson (1979).

The presence or absence of the elastic unloading region in the appr?ximate solu-
tion does not seem to affect the overall features of the solution since our re-
sults agree so well otherwise with those of Dean and Hutchinson. However, our
observations seem to confirm the prediction of Rice et al. (1979) co?c?rning the
presence of the elastic sector and gives added confidence in the validity of
their asymptotic solution.

Corner Theory Results

The solution for plane strain mode I steady state crack growth in a material in
which the yield surface is permitted to develop a corner at the current stress
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work stated as follows:

= P
[v Stijcijklekl dav Is éuiTi ds + JV deijcijklekl dav 1)
¥

where u is displacement, € is strain, gp is the plastic strain, T is the surface
traction prescribed on the surface SF and V is the volume contained by the

surface S. The linear elastic constitutive law is

o] =C e
ij ijkl 'kl

e . . . g
where e is the elastic strain and ¢ is the stress.
is used throughout.
following. On S—SF,

finite element equations when the appropriate approximate interpolations are
inserted. It should be noted that once the surface tractions and plastic strain
distributions have been chosen, only an elasticity problem remains to be solved.

Summation on repeated indices
The symbol § indicates an arbitrary variation of the quantity
Su must be zero. The principle (1) can be used to derive

A mesh of 4-noded plane strain isoparametric elements representing a rectangular
region adjacent to the crack plane vas used. The crack tip lay at a node in the
center of one long side of the rectangle. The crack surface was traction free
and the normal displacement of nodes on the remainder of this edge of the mesh
was constrained to be zero to model symmetry. The nodes on the other sides of
the mesh were subject to applied forces in accord with a stress state

T e 1 &

where r, 6 are polar coordinates measured from the crack tip and 6=0 is directly
ahead of the crack. The parameter KI is the mode I stress intensity factor and

fij was chosen to enforce the mode I elastic stress distribution.

The first step in the analysis was the solution of the linear isotropic elastic

problem with gp=Q. The magnitude of KI was chosen so that a plastic zone entirely

well within the mesh would develop at the crack tip if plasticity were present in
the analysis. In a steady state solution the strain rate of a material point

éij = -a aeij/ax, where a is the crack velocity and x is the direction parallel to
the crack. Consequently an estimation of the plastic strains can be obtained by
integrating the constitutive law along lines parallel to the crack to determine the
stresses and plastic strains. The direction of integration is of course opposite
to the crack growth direction. In the flow theory calculations, consistency
between the tensile equivalent stress and the tensile equivalent plastic strain
according to the stress strain law vas enforced by using the technique of Rice and
Tracey (1973) to integrate the constitutive law.

The resulting plastic strains were inserted into the finite element equations
derived from (1) and the equations were re-solved to give a new distribution of
total strains. Plastic strains were then recomputed and the process repeated
until the solution converged. The first solution so obtained was for a high value
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point shows some significant differences from the equivalent solution for the
isotropic hardening case. These comments are based on results for a ve?tex theory
constitutive law (Christoffersen and Hutchinson, 1979) in which proportlona% load-
ing gives rise to power law hardening with N = 1/3 and the equivalent solutxgn
from the smooth yield surface results is taken as that with power law hardenlvg
exponent N = 1/3., Proportional loading of these two materials would lead to iden-
tical behavior. In the cormer theory law the response to stress rates not ?ro-
portional to the current stress was chosen to be governed by the function'glven

as eq. 2.26 in Christoffersen and Hutchinson (1979) with en = 280. In this mate-

rial the active crack tip plastic zone was found to be slightly downstream from
the zone for isotropic hardening. The trailing edge lagged behind more than the
leading edge and there was only a small trailing elastic unloading wedge in the
corner theory material. This presumably reflects the reduced range of stress rate
directions giving rise to purely elastic response at the yield surface vertex. )
There was no change in the height of the plastic zone measured normal to the crack
plane. The crack opening displacement for the corner theory material exceeded
that for the isotropic hardening material, but only by about 5% at the most.
ever, a more obvious difference introduced by the development of a.vertex on the
yield surface was the much lower stress level ahead of the crack tip on the Er?Ck
plane. The stress Oyy was reduced by as much as 20% and by an average of 10% in

How—

The mean normal stress ahead of the crack on 8 = 0 was alsol
The development of the vertex on the yield
on 6 = 0 in the plastic zone, except

the plastic zone.
reduced in the corner theory material.
surface caused an increase in the strain Eyy

very close to the tip. This increase was due to the much larger plastic strain

P

€ in the corner theory material on 6 = O in most of the plastic zone. However,

on 8 = 0 the quantity (%»e?, s?j) for the flow theory material exceeded that for
11 "4 )
the cornmer theory material quite considerably in most of the plastic zone.

Dean and Hutchinson (1979) analyzed mode III (antiplane strain) steady state crack
growth using the corner theory constitutive law. The form of the tFansition func-
tion between proportional loading and elastic unloading differed slightly from
that used in the mode I calculations just discussed. Dean and Hutchinson fou§d no
great difference between the solution for the corner theory material and the iso-
tropic hardening case in mode III. Only the crack tip opening displacewent
differed by as much as in plane strain mode I. The generally greater dlffereyce
in mode I is, perhaps, not surprising since, as noted by Parks (1980) , therells
much more potential for nonproportional loading in mode I crack growth than in
mode III.

Rice and co-workers (1978, 1979) and Dean and Hutchinson (1979) have devel?ped

models for predicting whether steady state crack growth in a material requ1Fe§ é

higher stress intensity factor K s than the value that causes crack growth initia-
- s

tion K . The hypothesis of these models is that the same fracture criterion,

c
whether based on crack opening angle or critical strain at a certain distance
ahead of the crack, can be used both for initiation and for steady growth. 1f the

ratio K /K 1is greater than unity then the potential for stable tearing under
ss' ¢

rising load rather than unstable growth exists in the material. The same approach

can be used to determine whether the development of a vertex on the yield surface

enhances or diminishes the likelihood of plane strain mode I stable tearing. Con-

sidering the crack opening angle criterion first, there would be a slightly 1ow?r

value of K /KC in the vertex material and thus a marginal reduction in potential
ss

As Dean and Hutchinson (1979) note, based on mode III, the

for stable growth. .
However, a slightly enhanced potential for

difference can hardly be significant.
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stable tearing in the vertex material arises if the critical strain ahead of the
crack is used as the criterion, as long as the distance from the tip at which the
strain is determined is small, say less than 20% of the plastic zone. However, if
larger distances are involved then a considerable reduction in the likelihood of
stable tearing is possible. Perhaps calculations of void growth in the near tip
region according to the model of Rice and Tracey (1969) as used by Rice and i 98
Johnson (1970) and McMeeking (1977) might be helpful here. The reduced mean nor-
mal stress and equivalent plastic strain levels in the vertex material ahead of i .
the crack would seem to indicate that void growth would be less strong on 8 = 0 :

in that material than in the isotropically hardening material. Thus higher KSS ’ *
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values would be required in the vertex material and stable tearing would be more « Elastic TEM ,Stationary L] 03
likely. Of course, the Rice and Tracey (1969) void growth model based on iso- o
tropic hardening may be too inaccurate for predicting void growth in any useful =-N=1/3 =
way in the vertex material, but mean normal stress and plastic strain rate can +-N=1/10 ° |
still be expected to play dominant roles in controlling void growth. However, L N=0
significant hole expansion in practice seems to occur only very close to the crack

tip and the available finite element results on stable growth may not have suffi-
cient detail near the crack tip to gllow significant hole growth calculations. i P ’ , 0
Further numerical analysis of stable growth is being carried out both for the -5 4 3 -2 -1 o]
isotropically hardening material and the corner theory material. [X/(KI/O'y) ] (ldz)
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Fig. 1. Crack tip opening displacement during steady state mode I plane strain
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Figs. 3-5. Active crack tip plastic zone for steady state mode I plane strain
crack growth for isotropically hardening material. Poisson's ratio
is 0.3 and N 1is power law hardening exponent. In perfectly plastic
case (N = 0) the elastic unloading region between 115° and 163° pre-
dicted by Rice et al. (1)79) is shown.
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