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ABSTRACT

A numerical analysis of steady-state crack growth in an elastic-ideally plastic
material under small scale yielding conditions is presented. Crack growth is in
the antiplane shear mode and inertial resistance of the material to motion is in-
cluded. The numerical procedure is based on the finite element method. It is
found that, with increasing crack tip speed, the active plastic zone becomes
smaller and less concentrated in the direction of growth, the crack opening angle
remains unchanged, and the crack tip strain singularity becomes weaker.
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INTRODUCTION

The purpose of this paper is to report on a study concerned with the influence
of inertia on the deformation field near the tip of an extending crack in an
elastic-ideally plastic solid. The particular problem under consideration is
the steady-state growth of a crack in the antiplane shear mode through a body

of elastic-plastic, nonstrain-hardening material under small scale yielding con-
ditions. Inertial resistance of the material to motion is included explicitly.
For this situation, the deformation is time-independent as viewed by an observer
fixed at the tip of the semi-infinite crack in an otherwise unbounded body.
According to the small scale yielding hypothesis, the elastic-plastic field in
the crack tip region is controlled by the surrounding elastic field. A useful
measure of this surrounding field, for any given crack tip speed v, 1is the
linear elastic stress intensity factor k, which is assumed to be known in terms
of body geometry and applied loads from solution of a suitable elastic crack
problem.

This same problem, but with inertial effects neglected, was studied in some
detail by Rice (1968) and Chitaley and McClintock (1971). Each employed incre-
mental plastic stress-strain relations based on the associated flow rule and a
yleld condition suitable for the antiplane deformation mode in a nonhardening
material. For this case, both the Tresca and Mises criteria reduce to
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where 013 and 023 are the operative shear stress components and T, is the
flow stress in pure shear. They showed that the principal shear lines in the
active plastic zone are straight, and Rice (1968) determined the distribution of
plastic strain on the line directly ahead of the tip in terms of the unknown dis-
tance between the tip and the elasticplastic boundary. Chitaley and McClintock
(1971) went on to numerically integrate the field equations. In a more recent
study of the same problem, Dean and Hutchinson (1979) noted some discrepancies
between the results of their finite—element calcualtions and the numerical results
of Chitaley and McClintock. Whereas the latter authors assumed that the principal
shear lines in the active plastic zone were all members of a centered fan, the
results of Dean and Hutchinson suggest that, in a portion of the active plastic
zone, the shear lines do not form a centered fan. Results of other studies on
quasi-static steady antiplane shear crack growth have recently been reported by
Anderson (1974), Amazigo and Hutchinson (1978) and Sorenson (1978).

If material inertia is taken into account in this steady-state problem, then the
system of governing equations retains the property of hyperbolicity in the active
plastic zone. However, the directions of principal shear lines are no longer
characteristic directions. Instead, there exist two families of characteristic
curves which coalesce to a single family in the limit as crack speed v ™ 0. No
clear picture of the structure of the characteristic net within the active plas-—
tic zone is yet available. Attempts at extracting the asymptotic behavior of the
crack tip field for points arbitrarily close to the crack tip have been made by
Slepyan (1976) and by Achenbach, Burgers, and Dunayevsky (1979). Some results
have been derived, but they have the unfortunate feature that the deformation
fields do not reduce to the correct near tip field (cf. Chitaley and McClintock,
1971) as crack speed v > 0. It is likely that the extent of the region in which
the asymptotic results are valid also vanishes as v > 0. Results of another
study on steady-state dynamic antiplane shear crack growth have been reported by
Achenbach and Kanninen (1978).

In the following two sections, a numerical analysis based on the finite element
method is described. In the next section the governing equations are put in
suitable form, and the numerical procedure is described in the following section.
Some general conclusions are drawn in the final section.

FORMULATION

In the development which follows, all variables are referred to a translating set
of Cartesian coordinates (xj, Xp, x3) in the body. The xj-axis coincides with
the edge of the crack and the crack edge (or tip) moves in the xj-direction with
speed v; see Fig. 1. It is assumed that the crack has grown for some time
under the action of slowly varying remote loading, characterized by the elastic
stress intensity factor k. A long-time, or steady state, solution is then
sought under the assumption that such a steady state solution will indeed be
achieved after all transients associated with initiation have died out.

The displacement vector is in the x3j-direction and its magnitude u3 depends
only on position in the xj3, xp-plame. It is convenient to introduce the fol-
lowing nondimensional coordinates and corresponding field quantities:

x = x Tglkz y = XZGTg/kz W o=ty u3/k2 (2)

Yx = 2v€31/ T, Yy = 20e33/T, 3)
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Fig. 1. The plane of deformation, showing a coarse
representation of the finite element mesh.
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Fig. 2. The y-component of total shear strain vs. distance
ahead of the moving crack tip, showing a comparison of
numerical and theoretical results.
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Tx =%/ Ty =932/, (4)

where M 1is the elastic shear mOdUlH§! £31 and €33 are components of the
infinitesimal strain tensor, o = J1-v4/c4 and ¢ 1is the elastic wave speed
/P, where P is material mass density.

Because fields are steady as seen by an observer moving in the X]—direction at
speed v, time differentiation is equivalent to the operation =-v3( )/axl. In
the absence of body forces, the equation of motion then has the form
2
+ =
Tx,x T oty o = (v/e) Voxx (5)

where the standard comma notation for partial differentiation is employed. The
total strain is decomposed additively into elastic and plastic portions,

Yg = Yg+ Vg 5 B=x or y (6)
and the elastic strain is related to the stress according to
Tg = Y§ = (YB - YE) » (7)

By making use of the strain-displacement relations
Tx =wx and Yy =qwy (8)
along with (7), the equation of motion (5) may be written in the form

- 4 =a=2yp 4a-lyp

xx T Yy x,x Y.y @
The asymptotic behavior of the stress components as r = sz + y > * is chosen
to be consistent with the small scale yielding hypothesis. Thus, in nondimen-
sional form, the stress components are required to approach the values

sin (8/2) cos (8/2
- SR o (0/2) (10)
av2rr v2nr
where 6 = arctan (y/x) , as r+wo .

NUMERICAL PROCEDURE

To serve as a basis for developing a numerical procedure, the governing field
equation (9) is converted to the variational form

f Vw* . yw dA = —f w (o "2 yg . +o71 yP )da +[ w*(n . yw)ds (11)
A A ’ y’y aA

where A 1is any region of the plane bounded by 3A,V 1is the two-dimensional
gradient operator, n is the unit normal to 9A pointing out of A, and w*

is an arbitrary function having the same smoothness properties and satisfying the
same kinematic constraints as w. The region y > 0 is then divided into finite
elements, and the displacement is approximated by w = $§6; , {1 = 1,...n and sum
mation implied, where &; are the values of the displacement at n Eoints, or
nodes, and ¢i are the interpolation functions. Likewise, w* = ¢151. The

n x n stiffness matrix for any region A is then
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Consider now the rectangular area shown in Fig. 1. Af;er integration by parts of
the area integral, the right side of (11) becomes Riéi where

R, = f [@™2 yP ¢,
i A X

-1 ,p
1x T Yy 0y ] dA (133

+ fr ¢, ™2 [0 cos (8/2)="1 n, sin(9/2)] ds +fr bl + (v/ac)HPldy.
1 2

The path T; 1is the perimeter of the rectangular region in Fig. 1, except for the
portion of the left boundary in the wake region which is identified as . It is
clear from (13) that boundary tractions are imposed on 'y which are consistent
with the asymptotic stresses (10). For this to be a reasonable identification,
points on Tj should be far from the crack tip compared to the plastic zone size.

*
Thus, with the finite element approximation and with § arbitrary, the varia-
tional statement of the governing equations (11) may be reduced to the system of
linear equations

Kij 6j = Ri(“{g, YI}J,)
In order to solve these equations for the displacements 51, the plastic strains
must be known. These are unknown a priori, however, and an iterative procedure
is adopted. Before describing the procedure, it is necessary to elaborate on the
stress—strain relation. Following Dean and Hutchinson, the present analysis
proceeds with a material which exhibits isotropic hardening and bilinear response
in uniaxial, monotonic shearing. In nondimensional form, the stress-strain
relations are

known quantities) (14)

Yg = Tg , T<1

GY8 = GTB + (1 -0G) TBT/T , T2>1

L}

(15)

where B8 =x or y, T = Ti +12 and G is the ratio of the plastic tan-

gent modulus to the elastic modulus 1 . The method of Rice and Tracey (1971) is
adopted for computing the stress field from a given strain field for any speci-
fied value of the hardening parameter. The steps in the numerical procedure may
be summarized as follows:

1. Assume elastic behavior, i.e., G =1, and calculate the elastic displace-
ments at the nodes. This is the first estimate, say §5(1).

2. Decrease the value of G by a small amount.

3. Calculate the total strains Yg(i) from the ith estimate of displacement
§j(1) by means of the strain-displacement relation.

4. Apply the method of Rice and Tracey (1971) to calculate the stresses Tg (1)
from the stress-strain relations.

5. Determine the plastic strain YgP(i) according to (7).

6. Calculate the (i + 1)th estimate of displacement §5(1 + 1) from (13).
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7. Compare dj(i + 1) to Gj(i). If the difference is sufficiently small, go
to step 8; otherwise, increment the index i by 1 and return to step 3.

8. If G =0, the process is complete; otherwise, reset i =1 and return
to step 2.

The finite element calculations were based on an array of 1800 rectangular ele-
ments, each comprising four constant strain triangles. The size of the smallest
element was approximately 0.3% of the maximum extent of the plastic zone. Within
each cycle in the iteration, stresses were computed by integrating incrementally
in the negative x-direction from the right hand boundary along lines of constant
y. For a repeated substitution procedure of the type employed here convergence
is essentially linear, and typically 30 to 100 cycles were required to meet

the convergence criterion set in step 7, i.e., that the square root of the sum of
the squares of the nodal displacement differences is less than 0.0001.

RESULTS

The numerical scheme was first applied for the special case of quasi-static crack
growth, i.e., for v = 0, so that the computed strain distribution on the pro-
spective fracture plane could be compared to the exact result given by Rice
(1968). As can be seen from Fig. 2, the computed strain distribution is very
close to the exact distribution everywhere except in the elements nearest the
crack tip where the numerical scheme cannot reproduce the logarithm squared singu-
larity in the exact result. The calculated active plastic zone for quasi-static
growth is shown in Fig. 3, along with the familiar circular plastic zone for the
stationary crack under monotonic loading up to the same k level in the same
material. The shape of the active plastic zone is quite similar to the shape com-
puted by Dean and Hutchinson (1979), but the extent in the x-direction is found
here to be roughly 20% smaller. The principal shear direction at any point with-
in 20° of the x-axis was found to be nearly radial, except within elements very
near to the crack tip. Finally, a small region of reversed plastic flow was ob-
served in the wake region along the crack faces.

The numerical procedure was then applied for crack growth speeds equal to 30% and
50% of the elastic shear wave speed c¢. As shown in Fig. 3, it was found that
the active plastic zone became smaller and less concentrated in the crack growth
direction with increasing crack tip speed (at a given level of remote k). The
level of strain on y = 0 at a given value of x;/(k/1,)® also decreases with
increasing speed, as shown in Fig. 2. Local] behavior is consistent with the
result that Yy, is proportional to (in x)° near the tip for v = 0 (Rice,
1968), but is proportional to %n x near the tip for v > O (Slepyan, 1976).
The crack opening profile is shown in Fig. 4 for the three speeds v = 0, 0.3c,
0.5c. If the crack opening angle is chosen to be the slope of the opening profile
at some distance behind the tip equal to a small fraction of the active Elastic
zone size (extent along y = 0) for quasi-static growth, say 0.05(k/7 )“, then
it appears that the crack opening angle is insensitive to variations in crack
speed. On the other hand, in order to maintain a specific level of strain at a
fixed distance ahead of the tip for v > 0, as well as for v =0, it is
necessary for k(v > 0) to be substantially larger than the corresponding

k(v = 0). This is indeed the case for running fractures in materials which do
not exhibit a strain rate induced mechanism change during fast fracture.

The geometry of the principal shear lines in the active plastic zone is unknown
at present so that no comparison with exact results is possible. However, on
the basis of these calculations it appears that the principal shear lines may
differ significantly from radial lines during rapid crack growth.
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Fig. 3. The boundary of the primary active plastic zone
for quasi-static crack growth and dynamic growth at two
different speeds.
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Fig. 4. Crack face opening displacement vs. distance
behind the moving crack tip.
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