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ABSTRACT

The paper deals with an energy criterion developed in order to solve nondimensional problems such as stable crack
growth in three-dimensional structures (3D-structures) or bifurcation of cracks under non proportional loadings. After
the presentation of the so called “gradient” criterion, identification of its numerical coefficients for two aluminium
alloys (2618T851 and 2024 annealed) is performed from uniaxial constant amplitude tensile tests on precracked spe-
cimens. From these results, prediction of crack propagation is achieved for corner cracks in prismatic bars submitted
to pure bending ; comparison with corresponding tests on 2618T851 alloy shows a good accuracy of the prediction
concerning either the geometry of crack fronts or the values of energy release rate. Prediction of crack bifurcation
angles is also compared with experiments on a biaxial testing machine showing also a good agreement.

KEYWORDS : Crack, fatigue, three-dimensional.

INTRODUCTION

Mechanical problems associated with the existence of a crack in a structure are generally investigated from two points
of view : ’

i - crack instability under monotonically increasing loading (fracture problem),

i - stable crack growth under dynamic loading.

In each of these two domains, basic results, such as the definition of the stress intensity factor (Mushkelishvili, 1953 ;
Westergaad, 1939), its relation with crack growth rate (Paris and Erdogan, 1963) or its critical value (Tiffany and
Masters), concern mainly 2D situations in terms of stress or strain fields in the vicinity of the crack tip. Consequently,
fracture or stable cracking problems are formulated on a one-dimensional basis whether the crack has only one tip or
the system structure-loading-crack presents an axis of symmetry ; and prediction of behaviour is achieved with the

help of phenomenological relations between local variables.

Yet, in many practical situations, for instance 3D structures where a crack is idealized by a surface limited by a line
(the crack front), or in the case of non proportional loading where the crack can exhibit sudden changes in direction
of propagation, the above mentioned relations are not well established, or even of no use for the latter problem.

The work presented here is an attempt @k a better description of these phenomena through a unique formulation
based on energy criterion ; since, in the field of crack studies, distinction is made between the small scale yielding
ones and the others, we must Statehere that we restrict our analysis to rather brittle materials undergoing stable
crack growth due to constant amplitude cyclic loading.
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CHARACTERISTIC PARAMETER OF CRACKING

We adopt here the classical definitions of solids mechanics :

ﬂ : a solid

S : external surface of SV
SF : part of S on which external forces are prescribed
Su : part of S on which displacements are prescribed

F* : prescribed density of external forces
u* : prescribed displacement on Su
u : displacement SF
[T :set of points defining the crack front (discrete or infinite)
M :current point on I_'
R : current point on SF
v(M) : crack growth rate normal to r at M
n(M) : “outer” unit normal to [ at M.

We define a Physically Admissible Crack Growth (P.A.C.G.) through the relations (1) below : a crack growth is
physically admissible if and only if :

M (v, () > 0 Xhoss Io@HT S

It follows from (1) that ""Dirac” type crack growths are not considered here although some analyses of fracture
problems lead to this type of solution (D’Escatha, 1978 ; lrwin, 1957).

We suppose, as classical (Broek, 1974), that crack extension occurs at constant external load ; the power of external

load being then :

@ P | F e ds,
. S¢
aL<R) is the displacement rate associated to U (M)

F'&.'*(R) being constant, EL(R) depends only on (M)

@) UVL(R):J ?,(RIV(M))dM
A
T
fi. denoting the influence function of crack growth on displacement field. A limited Taylor’s expansion of P,(,
leads to :

(4) gj: F@*(R).JSF hL(R/rﬂ).v(M).JM

or {) SF b

(5) _/ = [ F:(R),hL(R/M).dSF]v(M)-dM
I 7S¢

(6)

with
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(6) gj: Q(M). v (M).dM
T

with

@) QM) = | F¥R). hi (R M).dS
SF

On the other hand, following the definition of the “energy flow” towards the crack (Atkinson and Eshelby, 1968),
and the results of Bui and Dang Van (1979) :

(8) g): "_“Y.Z(K;(H)+KE(M)>+.4_ Ke(M)|v(M). d M
pilinE: el

KI, KII and Km being the classical stress intensity factors. Consequently, in the frame of linear fracture mechanics
Q(M) is the identical to the Griffith’s parameter ; if the material no longer exhibits linear behaviour, it can be shown
from Lemaitre’s work (1976) that Q(M) remains the characteristic parameter of crack growth. Since we deal here
with linear elastic material we shall retain the former definition from eqs. (6) and (8) it follows :

o QM) = 4—3( KE() + K () Sl

If A denotes the cracked area and W the potential of external forces, we can write :

{10 QM = 4 ?ﬂ)
2\ DA/M

Computations of Q(M) will be performed according to (10).

CRACK GROWTH BEHAVIOR

Let us consider a general cracked structure with a given external loading. At a given value of the power of external
forces we can associate an infinite set of cracked domains each of them being defined by a vector field v(M). This

leads to the definition, in the space of parameters describing the crack, of convex equipotential surfaces ; the point
corresponding to the actual state is called the loading point and we suppose that this point is unique. We suppose

also that we can define the "gradient’” of W in the sense of (10).

In order to solve 3D and bifurcation problems we propose the "“gradient’’ criterion which writes :

“Among all P.A.C.G., (defined from (1)), the actual one is normal to the equipotential surface at the loading point”’.
An alternative writing is : “Among all P.A.C.G., with equal euclidian norms, the actual one maximises “. In this
form this criterion can be considered as belonging to the general formulation of Son (1978), with a particular expli-
citation of the potential, and can be compared with the fracture criterion initially recalled in (d’Escatha and Labbens,
1978). If y(M) denotes the actual crack growth rate field, it follows then from egs. (6) and (10) that :
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2024 Alloy

W 20} y(mm)
M y(mm)

(“n (M) = o<.(___
DA
2618 T6 Alloy

o being a scalar constant depending on the material itself and is identified from crack growth tests. . o
10

APPLICATIONS

This approach was applied to two types of situations :

— actual 3D configurations
bifurcation of crack ' floim)
— bifurcation of cracks. - S . :
g 0 10 0 10 20
Application of such an approach requires, as classical, two main steps ; first, identification, from basic tests, of the : ;x"ggggg cycles ; x:ggggg cycles
model for a given material, and second, comparison of experimental and predicted crack growths. ‘ 3N-115000 » 3 N.106500 .
Identification Fig. 2 — Measured crack fronts
It is essentially based on constant amplitude tensile tests performed on rectangular or square cross section bars ; a - a(MPa )'7/ cycle a (MPs )'7/cyc/e
half-penny shaped crack is initially machined (see fig. 1), its - ]0" 107¢
y . ; e |
) plane being perpendicular to the longitudinal axis of the bar.
¢ Material. 2618 T 6 . ] . : ; o o, 40 oot t e v
The test is then carried on, during which the different geome- s ‘H”vt‘}v}“# 2 ,' 0
i it ++ + o
* °

tries of crack fronts are measured through thee different

{20 () techniques :
| e x 10° 1074
Z 1 ; i :
80 potential dron method (Baudin and P.ohcella, 1979), Q (10Nm™) {/\ 0 (10 4Nm™)
i — surface markings by few underloads (it was checked e T 0
is di o1 1 ai 1
that this did not burb crack growth),
A petburly ctackigrovh) 261876 Alloy 2024 Alloy
Y Material. 2024 — color surface marking following a method developed at
Laboratoire Central de la SNIAS (Esnault). L Fig. 3 — Identification of the model.

Comparisons Between Predicted and Experimental Resuits

3D _Configurations . Pure bending tests have-been performed as described on figure 4. During them, the same measu-
ring procedures were employed as indicated above. Simultaneously numerical predictions of crack front geometry as

Fig. 1 — Cross sections of specimens used in tensile

40— — —1——— +—x'
‘ tests. Sinusoidal loading. Amplitude : 11600 daN,

() Zero minimum force.
b [{— ot : a function of the number of cycles are made, using the results of identification to definec . The retained value was :
z
fe co 4 o — 2 .
a =0.34 x 10* (MPa)/cycle (see fig. 3).
Figure 2 presents the obtained crack fronts for several numbers of cycles. From these results, computation of para- ‘ ‘>Lf

45{mm

meters Q(M) is performed with a numerical procedure described below and supported by a F.E.M. analysis ;
9 points on each half crack fronts were actually selected owing to the symmetry.

Interpretation of these results with the present model is shown on figure 3 which indicates that the behaviour of the

material is quite correctly described. A 1 45mm Fig. 4 — Pure bending test.
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Starting with an initial crack front, integration of eq. (11) is then performed independently of test itself. Comparison
of geometries of crack front are shown on fig. 5, 6 and 7 ; furthermore, since it is necessary to compute values of
Q(M) to perform prediction, we also compared the values of Q(M) computed on the actual and predicted crack front
at each number of cycles of reference. Results are presented on figure 8, showing a sufficiently good accuracy.

70_A(mm) k(mm)

D o

10

Fig. 5 — Comparison at N = 74800 cycles

for pure bending test. Fig. 6 — Comparison at N = 81400 cycles for pure

bending test.

measured front
o predicted
——— initial crack

2618 7851 Alloy

measured front
° predicted 2618 T851 Alloy

——— Initial crack

@ on measured fronts
(104Nm™)

02 4

014

Q on predicted fronts
(10%NmT)
0.1 02 03

Fig. 7 — Comparison at N = 94000 cycles for
pure bending test.
measured

o predicted
——— initial crack

Fig. 8 — Comparison of local energy parameters.

2618 T851 Alloy
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Bifurcation of Cracks. This problem is illustrated on figure 9 ; under the system of two tensile forces F1 and F2
(acting dynamically along two perpendicular directions 1 and 2), and for a given ratio F1/F2 = p, the crack propa-

gates along an initial direction defined by angle {3 ; if p is suddenly changed, one observes, after few cycles, a

new direction of propagation defined by bifurcation angle X . Several criteria have been proposed in order to predict
o , some of them are based on the analysis of the state of stress in.the vicinity of crack tip, (Erdogan and Sih,
1963), or on energy or energy density evaluations (Sih and Kassir ; Hussain, 1974). Since the "gradient” criterion is
also able to predict an angle of bifurcation, comparison between all these criteria with tests performed on the

biaxial testing machine developed at ONERA (Chaudonneret and co-workers, 1977), or at University of Metz
(Pluvinage), are presented on figure 10.

The tests begin with an artificial saw cut crack along (3 direction and propagates in this direction when p = 1.
Putting p = O (at constant amplitude F5) results in a bifurcation « . All this is widely investigated (Gilles). For this
problem, the “gradient’” criterion is consistent with a previous formulation (Bergez, 1974) as mentionned by Ladeveze
(1977).

Fig. 9 — Definition of bifurcation.

90+ — — — — Erdogan and Sih
Prediction ) - Sih
————— Hussain
“gradient” (present paper)

{ X Univ. of Metz

lest o ONERA

AEIR

Fig. 10 — Prediction of bifurcation.
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NUMERICAL PROCEDURE

From its definition, in the case of linear behaviour, Q(M) is simply related to the energy release rate and consequen-

tly, can be computed either directly or through the analysis of mechanical state in the region close to crap tip.
Hence two different types of methods are available :

— methods based on displacements of crack tips (Heliot and co-workers, 1979), or on stress and strain fields
(Newman and Raju, 1979),

— direct computation of energy release rate by a perturbation method (Parks, 1971 ; Hellen, 1975).

We chose the second type, mainly in order to avoid the problem of relating stress intensity factors to energy release
rates when dealing with cases which are not pure plane stress or plane strain ones, since in actual 3D situations the
crack front generally runs from pure plane stress zones to 3D state of stress ones.

The method presently used is the first order expansion and we recall it briefly, with the following notations :

K . stiffness matrix
u : displacements

*

for a given state of crack
external force

$K : perturbation of K

: corresponding to a small perturbation of the position of a node on the crack front
$u : perturbation of u

From classical F.E.M. it comes :
12) (CTIOTE )
(13) (K+SK)(u +Su) =F*

Retaining only first order terms :
-1
(14) Sl =~ Kl Ko

Hence, the variation of the potential of external forces is :

(15) SW = "F* su
(16) SN TR S
(17) S = b S

Using only first order expansion limits the size of perturbation to approximately 1/100 of the dimension of the
finite elements comprising this node. Yet, it is possible to perform exact analysis by retaining second order terms at
no prohibitive costs.

The accuracy of this method was checked by comparing its results with analytical or quasi analytical solutions of
two problems :
— circular crack in an infinite body submitted to pure tension,

— cylindrical rod with ""external” circular crack, in pure tension.
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For the first case, analytical solution for stress intensity factor K along the crack front of radius a is, according to
Collins (1962).

A
(18) K = 20:(_%)7-

The computed value for one quarter of cylinder defined on figure 11, assuming plane strain, with :
a = 8.75 mm

0=, = 100. MPa

K = 10.65 MPa m"/2,

Analytical definition (17) leads to :
K = 10.56 MPa m'/2.

The ratio a/R was taken sufficiently small in order to avoid boundary conditions effects. For the cylindrical rod,

several semi analytical formulas are proposed ; let us mention, for instance (see fig. 12) :

i
(19) Weoor, 4 (Ei;""_"__)/a with m=_FR
mz\ B 4-08m o
120) oo & (TV Ro . t (4—m) 2 k = ¥(m)
— - .T“.E- (-3 -—

it K=oz .m RZ‘(M _o.qu9o)
l42 2V

respectively by Rooke (1976), Sih (1973), Benthem and Koiter (1973).

a-875mm
R-100mm | %= 2R,

Fig. 11 — One quarter of cylinder with concentric Fig. 12 — Cross section of cylindrical rod

circular crack. Detail of meshing. with external circular crack.

Vol. 4 AFR - P
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Figure 13 shows the values of K from (19) (20) (21) and computed values by perturbation (with Ro = 22 mm,
Uoo = 1 MPa). We deduced that numerical results were sufficiently accurate ; it must be mentioned, however,
that the perturbation method exhibits some sensibility to the meshing, requesting thus a careful examination of this
step of the analysis.

157K

—e— Harris (mentioned by Rooke)

—+— Benthen and koiter
N ~o— Bueckner (mentioned by Sih)
\?\x < results with perturbation

\.§ method
10 NS
NS
NN R -22mm
N 0
NI
NN a,=17
NN
INASY
~i~
‘\9\
St
5 See
\-\Q$9§Q
\‘iii‘j
7 R (mm)
10 15 20
Fig. 13 — Stress intensity factors for cylindrical rod with circular crack.
(see notations on fig. 12).
CONCLUSION

The interest of the approach presented here is demonstrated by accurate predictions of either 3D crack growth or
bifurcations with the help of the same formalism. However, since the results were obtained for only one type of
material (2618 or 2024 aluminium alloys) it requires further work on other alloys, steels for instance, in order to

form a more precise idea of the validity of the present formulation.

As initially indicated, we restricted here our attention to the case of constant amplitude loadings ; as it is well
known, from 2D experience, that changes in levels of loading can have an important influence on crack growth, the
present work must also be extended in this direction ; with respect to this, the crack threshold approach (Pellas
and co-workers, 1976) can be coupled with the “gradient’’ criterion.
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