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INTRODUCTION

Fracture mechanics has given rise to the problem of calculating values of
stress intensity factor, K, in elasticity, i.e. the value of K at square
root type singularities of stress near a crack contour. This problem,
not simple by itself for complicated shapes of crack contour, becomes
almost irresolvable if variations in K have to be investigated for the
sequence of contours assumed by the crack as it develops (as is necessary
in an analysis of the kinetics of crack growth). Hence, a problem
naturally arises regarding the estimation of the values of K from which
it would be possible to derive sufficient conditions for fracture (or non-
failure) of a solid. The problem here is to find upper and lower bounds
for the maximum and minimum values of K for a given contour or set of
contours.

The present paper reports recent results obtained in this area, and also
some other bounds of integral characteristics of the solutions of
elasticity which are closely associated with these upper and lower bounds.

1. BOUNDS OF STRESS INTENSTITY FACTORS FOR A PLANE OPENING-MODE CRACK
IN AN ELASTIC SPACE

Consider an elastic space with a crack occupying the domain G in the plane
x3 = 0 bounded by a piecewise smooth curve T. It may be assumed that the
external load is represented by wedging tractions symmetrical with respect
to the plane x3 = 0:

o33 = -q(x1, x2), x3 =0 (x1,x2)€G _ (1.1)

Only normal stresses act in the plane X3 = 0, while the vertical component
of displacement on this plane outside the crack is zero:

T3 = T3 = 0 (Xg = 0), W(X}, Xg) = 0 (X],XQjEG

In the plane x3 = 0 along the smooth parts of crack contour the stress
o33 and displacement w have singularities of the type:

2
T w = 0=y ) s (1.2)

>

3 E

where S is the distance along the normal from the crack contour;
N(t), (x1(t), xp(t))el is the stress intensity factor at a given point
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on the contour corresponding to the value of the parameter t.
The following thecrem of comparison is essential for further discussion.

Suppose that there are two crack domains G and (G'<CG) with contours I' and
T' having a common region I = T T''. Assume that I'" consists of a certain
number of smooth arcs and (or) isolated points of contact of the contours
r and T'. Further assume that the corresponding loads q(xj,xy) and

q'(x1,xz) satisfy the conditions:

q(xy,x2) > 0 (x1,%2)eG/G", q(xy,x2) > q'(xy1,x2), (x1,x2)eG (1.3)
Then, at those points of I'"', where the normals to the contours coincide,
the stress intensity factor N for the crack occupying the domain G is not
less than the stress intensity factor N' for the crack occupying the domain
G

N'(M) < N(M) , Mer" (1.4)

The proof of this theorem and examples of its application are given in

[1].

Of the corollaries to this theorem, we may mention the following assertion,
which is valid within the framework of quasi-statical growth of cracks.

Let there be two contours Iy and Ty, of which the first envelops the
second at the initial moment, and a system of wedging loads g and qg'

such that ¢q > q' at any instant and at every point. In this case

a crack developing from the contour Iy will always remain inside the
bounds of a crack developing from the contour Tp. Hence, we have two
simple, but important, conclusions:

(a) If the crack bounded at the initial instant by the enveloping contour
is not critical for a given history of loading (i.e. it does not lead to
failure), then the crack bounded at the initial instant by the enveloped
contour is also not critical.

(b) If the enveloped crack is critical, then the enveloping crack is also.

Because of these assertions, the need to analyze complicated "irregular'
curves is eliminated, and thus it is possible to restrict consideration
to relatively simple crack contours. Indeed, these assertions are quite
natural, and it may be assumed that they hold true for opening-mode
cracks, not only in the whole elastic space, but also in bodies of other
shapes. Unfortunately, this statement has so far not been proved, and
we have therefore to limit ourselves to far less general statements.

It is not difficult to perceive that in all these arguments we have made
use only of the property of positiveness rather than any particular
solution of the elastic problem: positive (wedging) loads give rise to
positive displacements of points on the crack surface and positive
(stretching) stresses outside the crack in its plane. Thus, in order

to widen the field of applicability of these assertions, it suffices to
establish the positiveness of the corresponding class of elastic problems.
Tt is natural to expect that the opening-mode crack problem will be a
positive one not only for an infinite body, but also for bodies with
boundaries sufficiently remote from the crack. This assertion is proved
below for the particular case of a layer with a crack in the midplane.
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2. OPENING-MODE CRACK IN A THICK LAYER

Suppose that the crack under consideration occupies a plane domain G of
diameter d in the mid-plane x3 = 0 of an elastic layer of thickness 2h.
Assume that there are no tractions on the layer faces and the crack
surface is acted upon by normal forces:

o33 = -q(x3,x2) , (x1,x3)eG (2.1)

The problem can be reduced to the following pseudo-differential equation
(see Appendix A):

S
Ar = - :iéwljﬂ s (xX1,%x3)e6 (2.2)

where A is a pseudo-differential operator with symbol A(£)
Y -i(x,8) . .
Ar = —— ffA(_F,)r(E)e dg, A(E) = -2 |gl+2nK(h]|E])

4= "% .
(2:3)

K(h

-
S

) ( , 2 2 *2“!5‘)
%K(hfil _ 2lgl\i+2hlgl+2n Jg]| -e
‘ ,
|

Here & ;{(El,gz) stands for the parameter of the Fourier transformation in

L.
(xl,xz)_r(a).is the Fourier transform of the displacement of the points on
the surface in the direction of X3, and v, u are the Poisson's ratio and
shear modulus of the material, respectively.

Let Rh(xl,xg,nl,UZ) = Rh(x,u) denote the resolving operator of Eq. (2.2),
so that
r(xy,x»s) = . Rh(x,qu(u}du (2.4)

Fgr an infinite medium (h = «) we have K(h|g|) = 0, and the left-hand
§1de of Eq. (2.2) contains only one term. Hénce, by the assertion proved
in Section 1, we find that the posi-function q(x) in the right—hand‘side
corresponds to the positive solution of Eq. (2.2) regarded as an
equation in r(x). Thus, R_(x,u}>0, i.e. the operator R_ is positive.

In order to show that the operator Rh is positive for su?ficiently large

h, we shall construct the solution of Eq. (2.2) by iteration, assuming that

rg = qu N TK = Rm(q+qK) o K>1

u 1 -
qp = - — (27)K(h
K 2(1-v) (2™ 1!‘ i

v 1, E)
1 = 35
Elrg_1(8), deg

(2.5)

The quantitites qy may be looked upon as fictitious additional loads which
have to be applied to the surface of a cr
crack opening may
approximation.

O th I ack in an infinite space so that
coincide with crack opening in this layer to the same
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Clearly, positiveness of Rh will be proved if it can be shown that

(q+qK) is positive for any K.

Let q' = lim q. From the convergence of successive approximations (see

Koo )
Appendix B) it follows that for sufficiently large values of the ratio
h/d, the correction term in Eq. (2.5) will be close to

o & el s J'(ZW)K(h]gl)rg(i)e_l(x’g)da (2.6)
2(1-v) (2wm) *~

in turn, using the smallness of h/d ,
asymptotically represented by

this expression can be

Q % al = —F ‘*""L*Z"‘Tf/ (21K ()T (0)dn (2.7
2(1-v) (2m) b A
This relationship defines in the domain G a constant additional

load acting in the same direction as that of the initial'loads npplied toha
the crack surface. The fact that this additional load, }rrespect1v§ of the
initial load q distribution, does not vanish anywhere in the domain

't shows by itself that for sutficiently large h/q K tbe .
quaﬁtity q' and the sum (g3 + q') are strxct}y positive in the 0‘4- .
main G. By estimating the contribution of successive terms 1n the expansion
in powers of d/h (see Appendix C), we find that this as§ert10§ ?ema{ns valid
at least for d/h<0.7 which proves that the operator Rh is positive for

d/h<0.7 (i.e. for a sufficiently thick layer) and that all those assert%ons
cnunciated in Section 1 and [1] can also be applied for a thick layer with
a crack. At the same time, it has been demonstrated that the openlngland
stress intensity factor for a crack in a thickglager may be.asymptotlcally
represented (with an error of the order of 0(d /h7)) in the form:

r(x) = rg+*r;p -, N = Np+Nyo (2.8)

where rg is the opening of a crack under the actign of given loads q {n
a body occupying the whole space; Tig is the opening of the same crack
under the action of a constant load qj defined by (2.7). In Fhe range
of validity of the bounds (d/h<0.7), crack opening and stress intensity
factor at each point diminish on passing from the layer to the space
when the load and crack configuration remain unaltered.

3. EXTREMAL CRACK CONTOURS

3.1 The following approach may be of use in constructing the bounds of
stress intensity factors.

Consider an elastic body whose plane of symmetry x3 = 0 contains an gpening4
mode crack wedged by symmetrical normal loads q(xi,xp). Take an arblt{ary
closed domain Ggp (of area Sg) in the plane x3 = 0. Consider the set of

all domains G containing Gp as a subdomain and having an area S, S>So..

To each such domain we may attribute an energy W defiped'as the ?otentlal
energy of the body having a crack occupying this QDmaln in the given

field of loads. The quantity W is a functional of the contour T ?f the
domain G. Further assume that among all these contours, there exists one
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(or several) contour on which W attains its maximum. Such a contour is
hereafter called the extremal contour. The extremal contour consists of
two parts: T' coinciding with a part of the boundary of the domain Gg,
and I'' lying outside Gg (the part T' may, in general, be absent). The
main property of the extremal contour is that the stress intensity factgr
N is constant on the part T''. Indeed, along with I'', consider an arc T
close to T'' such that its end points coincide with the end points of T'

Then Irwin's formula (see [2]) shows that Ehe variation in energy on passing
from the contour I''+I'" to the contour I'+I  is

. m(1-v) 2 > > 5
oW = ——— N (nor)dg {5:1)
M T

where (ﬁo?) is the distance between the arcs T'* and T' along the normal
to I''. On the other hand, the corresponding change in the area is

oS = J((Kc¥)d1 (3:2)

iy
For the attainment of conditional extremum of W we should have
2
N -x = 0 , where A = const on I'' (3.2)

Thus, the invariance of N over T'' is the necessary condition that the
contour TI'"+I'' may be extremal.

If the arc I'" does not vanish, then the stress intensity factor on it is
not greater than N* over the remaining part of the extremal contour.
the contrary case, indeed, by deforming the contour I'' such that the
area decreases so that the area inside '+ remains constant, we find
that the energy increases, the area remaining constant. Using asymptotic
expressions for the stresses near corner points of the contour, we find
that there cannot exist angular points on the free part I'' of the contour,
at any case for N£O on the free part of the contour.

In

Suppose that we can find a sequence of embedded extremal contours r'{s)
corresponding to increasing the parameter S from Sp, and thus determine
the corresponding stress intensity factors N(S) on the 'free' part I
of the contour. Introduce a loading parmeter P, such that

q = Pqp(xy,x3)

(3:4)
Then for each $>Sy, there exists such a value P for which N = N* = const.
N* o o
P = O Np = N(S,qq) (3.5)

If N* is identified with the critical value of stress intensity factor
(N*=K/m , K is the cohesion modulus of the material) at which limit
equilibrium is attained at the crack edge, then the extremal contour of
area is W(S). We have obviously

2 U dw
N = T (3.6)

Since the true opening of a crack with a given contour can be found from
the condition of minimum potential energy of an elastic body, the problem
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of finding the extremal crack contour can be reduced, in a general case, to
the problem of finding the minimum, i.e. to finding, for a given area S,

a contour enveloping the domain such that Sp<S, for which W(S) attains the
value

Wo(S) = max min W
mesG=S G

3.2 We shall now give an example of an extremal crack contour. Consider
an infinite medium with a crack occupying the domain Gy in the plane x3=0.
Assume that the extremal loads are normal stresses acting on the crack
surface:

2 ey
o33 = P(1+sx1) (3.4

where € is small. If e = 0, in (3.7), then a circular contour I' will be
the extremal contour without common points with the initial contour Ty,
since the stress intensity factor does not vary over the contour of a
penny-shaped crack under uniform wedging loads. Therefore, by virtue of
the smallness of e and symmetry of load (3.7) with respect to the axes
X1,Xp, it is natural to search for an extremal contour among elliptical
contours close to circular ones. Let the ellipse be defined by the
parametric equations:

X1 = ajcos® , Xy = Bysin® »
o ao (3.8)
a; = a(1+gl) " By = 3(1*62)

where o; and o, are small quantities to be determined.

The stress intensity factor N on an elliptical crack contour under the
load (3.7) is given by the formula [4]:

2
e ‘u<ﬂ >
alB]

where the constants Cpg , Cpz , and Cpg are determined from the solution
of the system of linear algebraic equations:

-

5
a1By ay B,y a1By

Cog 1
l . 1
HMllf cz0 e

Co2 0
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12 2 2 12
4E(k)  8[k K(K)-(1-2k JE(K)] 8[(1+k JE(K) -k K(K)]
alB% a%B?k2 313§k2

1

" SL(k,klg 8U(k,k )

Ml] = o, 5 5 2 3 B

alBlk alBlk
1 1
0. 8U(13<,}<_!)__ @Q_U;.Lg% (3.10)
alek+ alBik
2 2 12 2
L = (3-8k +2/k YE(K)-2k (2+11k )K(k)
12 e 12
U=k (2-k JK(k)-2(k +k JE(kK)

2 2 5 10K?
Q = 203K -DKKR)+(3k + 2B (k)
NE

N

Here K(k) and E(k) are total eléiptiggl integgals of the first and second
2 Z 2

kind respectively; k = 1=By/ay , k = Bl/a£ From (3.10), we find
3 7 5 7}
a P . _ _3da 5 _ 2%9a P .
Coo = oy » Co2 = gepmy ¢ 0 Gy T - FEmoer © (3.11)

accurate to the order of e.

By virtue of (3.11) and the smallness of oy,
gp, from (3.9) we obtain

B

3a € > a 2
Za N o2 % 5 2 {9 2927 R
N o= mme {(l-cl—L;))~51.n a(» "+ ggpfreos B -\t ¢ ) (3.12)

Hence, it is seen that for

25 3 B
FAS » 92 = -ea 1% (3.13)

&

the stress intensity factor does not change over the contour. Thus,
ellipses with semi-axes given by (3.8) and (3.13) will be the extremal
contours for a load of the type {3.7).

This family of extremal contours may be used in estimation of the limiting
equilibrium of a crack of arbitrary configuration in a field of loads of the
type (3.7). We shall construct a family of ellipses with semi-axes ay and
By given by Eqs. (3.8) and (3.13) respectively for different a. From

these ellipses, take that ellipse I'* to which the given critical stress
intensity factor N = N* corresponds. Then all the cracks enveloped by

the ellipse I'* will be non-critical; all the cracks enveloping I'* will be
eritical, In a similar manner, as noted in 3.1, we may use the family

of extremal contours constructed for any (symmetric with respect to the
plane of crack) load field.

4. ENERGETIC BOUNDS OF AN INHOMOGENEOUS BODY

4.1 The following theorems on the variation of deformation energy with the
elastic constants of a body will be of use in further discussion.
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Consider an isotropic, and in general, inhomogeneous elastic body. A
body is regarded as inhomogeneous in the sense that its elastic constants
are different at different points: a = X(xi); u o= p(xi); ox::E = E(Xi);

Vo= v(xi) . Let S = SO+51+...Si be its boundary, where Sy is the outer

boundary, while Sl,‘..,Sj are the inner boundaries (cavities, cracks, etc.)

Assume that the external loads act only on the part S' of the surface S,
while the displacements on the remaining portion S$" are fixed:

5 () = £X) , X = (x1,x2,x3)e5" (4.1)

U = g(x) , xes" (4.2)

and that the body is in equilibrium under the action of these loads. The
following theorem holds true:

Theorem 4.1: On increasing (decreasing) the elastic constants ) and (or)
v or the Young's modulus E of the material at any region of the body, the
quantity

-

Q =ff;(x)Udo~ff;n(;)g(;) do (4.3)
Sn

Sll
does not diminish (increase).
Proof:

Consider the potential energy of a system in equilibrium [53]:
- E A S .
W) =‘[Adr—j's (x)U _(x)do (4.4)
% ST °
-
where U is the displacement field corresponding to the equilibrium state
of the body, and integration is taken over the volume of the body V,

U, is the displacement of points on the surface S, and A is the elastic
energy density.

" 2 2 2 2 2 2 2
A = E{A(€]1+522+933) +2u(ey1+egp+egg+2e10+2c,3+2e31) ] (4.5)

Diminish the elastic constants A and (or) p in some domain \/1 (with the
boundary S°) to a value A\; and (or) u; without altering the displacement
field. Evidently here the first positive term in (4.4) will diminish,
therefore,

W(U)>W, (U) (4.6)

-

where Wy (U) is the potential energy of the deformed body that corresponds
to the displacement field U. Note that the states with displacement field
U are admissible [5] for a deformed elastic body, i.e. the displacements
 take the same values on S" as the displacements ﬁl corresponding to the
equilibrium state under the previous loads (4.1). By virtue of the
minimum potential energy principle, we have
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> 5 4.7
Wy (0)>W (Uy) (44

For the equilibrium states of the jinitial and deformed bodies, by the
Clapeyron formula [5], we have

> E ol Eided
W(U) = 2 [:él%(x)Us(x)datézzn(X)g(X)dc]
- S -> e > > >
Wy (Uy) % [:[[f(x)uls(x)dc%nlmg(x}da} (4.8)

where 5 (;) and o (;) are the tractions developed on that part of the
n n

~)

i

surfaces of the initial and deformed bodies on which displacements are
given.

Due to (4.8), from (4.4) and (4.6), it follows that

q = ﬁn (U, (x)do -fﬁn (0 g (x)do<
ISA E S

ggn(;)al 5(x) dcr»{[i;nl (;)g(;) do = Q

Evidently, on interchanging the initial and deformed bodies, we find
that Q does not increase with the increasing constants A and (or) u. Thus,
the theorem has been proved.

(4.9)

Corollary 1

On the whole surface, if the external loads (S = §") are given gr Zero
displacements (E(%) = 0) are defined on a part of the surface 5", then
from (4.9) it follows that

e (f» (4.10)
/J.(f) (SZ)US(SZ)dm fUq ,do

i.e. the work done by the external forces does not diminish with.the‘
decreasing of elastic constants A and (or) u in an arbitrary domain of
the body.

Corollary 2

' >
If there are no loads on a part S of the boundary, i.e. f = O{ or
displacements are given on the whole surface (S = S'"), then from (4.9),

we have
[’5 c?)g&)daiﬁ (X)gx)do (4.11)
v N & 11

5 5 >
i.e. the integral of stresses with weight g(x) over that part of the
surface where the displacements are defined does not increase with
decreasing of the elastic constants X and (or) u in an arbitrary part
of the body.
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From this corollary it immediately follows that an increase (decrease)
in Young's modulus gives rise to an increase (or decrease) in Q, as the
constants X and u are proportional to Young's modulus.

Notes: 1: A few cases are mentioned for which Theorem 4.1 holds true
and its proof is practically unchanged.

1. Moments but not forces are applied to the surface of the body.

2. The body consists of several parts in contact and there is no
friction at the contact surface.

3. The body is composite and total adhesion exists at the contact
surfaces. 1If partial adhesion or a slipping condition is substituted for
total adhesion, then Q increases.

2: As the problem (4.1), (4.2) is linear, its fields of stresses
and displacements can be represented in the form of the sum
) £ g £ : <
oij=cij+o?j . Ui:Uj+Uf where the superscripts f and g denote the
solutions of the elasticity problem under the following boundary
conditions:

) IS VI s 8 -5 - e Y
a) cn(x)xf(x) & XeSH on(x)=0 s Xe8n
N . w5 .
b) o, (x)=0 , XeSY L U =(X) , wes»

respectively. With the help of this partition, the expression (4.3) for
Q may be rewritten as follows:

> b g o +g e
Q=JJ £(x)U" (x)de - JJo2(x)g(x)do
4] gn 1

whe?e account has been taken of the fact that, by virtue of the
reciprocity theorem, we have

f‘i > "g s L >
f(x)U®(x)do = cn(x)g(x)do
g S

Thus, the quantity Q is the difference between the work done by external
forces in the problem (a) and the quantity which may be called the work
QE pre-straining which has to be applied so that the displacement defined
in the problem (b) may be attained on S".

4.2 In the case of a crack subjected to uniform internal pressure P,
the work done by external forces is, evidently, equal to the product

of pressure P and the volume of opened crack {or increment in volume

due to deformation if the crack was opened initially). Therefore, from
the theorems proved above, it follows that a decrease in the rigidity of
a body in some of its parts leads to an increase in the increment of the
volume of internal crack in the body under a given internal pressure,
yhereas an increase in rigidity leads to a decrease in the volume
Lncrement* .,

*Hereafter, the term '"volume of crack' is used everywhere, and it is implicit

that the crack is closed in the absence of stresses.

Workshop

For an infinite body, in the case of uniformly distributed loads acting
normal to the crack plane, circles are obviously the extremal free contours
and the energy of a body with a crack equals half the product of stress
and crack volume. Hence, it follows that the volume of a crack occupying
an arbitrary two-dimensional domain G of area S, opened by internal
pressure P does not exceed the volume of a circular crack of the same area.
This inequality

2 .
« B B6ltewy S/°
ol = 372

3

4

is equivalent to the inequality known for the case of capacitance of a
plane domain [6].

5. APPLICATION OF ENERGY BOUNDS TO PROBLEMS IN FRACTURE MECHANICS

In certain cases, the energy bounds given in Section 4 are directly
applicable to problems of fracture mechanics, i.e. to the estimation

of stress intensity factors and assessment of the possibility of failure
of a cracked body. We shall give some examples.

5.1 Consider an axisymmetric piecewise homogeneous body having the
symmetry plane x3=0 normal to the symmetry axis (x;=x,=0). In the plane
x3=0 let there be a penny-shaped crack of radius R with centre at the
origin. Let uniform wedging loads act on the crack surface. Let
dl,...,di denote the characteristic dimensions*of the body, and vl,..‘,vK

and El>-~-’EK be the elastic constants of its homogeneous parts. As the

problem is linear, from dimensional considerations it follows that the
total potential energy of a body with a crack is

2 3
. P R R dy dK Eg l:,K
N = B % B e BBy e B ¢ SRR
2 ; 5.8
p2r® B, (5.1
TET Y Swe B0 Vi
m= 1, ik
n=1, LS K-1
o= dagn e pK
where the Young's modulus of that part containing the crack edge is
denoted by E;
Differentiating (5.1) with respect to R, we obtain
aw o 3p°R B, PR i 29
T F o b g e— t o~ == Y o dm {5.2)
3R Ej m’ Ey |
1 " 1 Er m=1 35m

*Here in considering the boundaries of an axisymmetric body or cavity
it is assumed that the characteristic dimensions dy,...d. are so chosen
that they do not diminish under all possible axisymmetric expansions of
the body or cavity.
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We shall distinguish two particular cases:

i

;1 a@/agm>0, m 1,...,1 (5.3)

1,...,1 (5.4)

2. 3%/3g <0, m
m

Note that the signs of (a@/sgm) for many practically interesting cases

can be directly determined using Theorem 4.1.

In the first case, obviously we have

According to Irwin's formula
2 E, 1 JW
N =

R e (5:.7)
2(1-vym 2m7R 3R

Hence, by virtue of (5.5) and (5.6) we obtain

5 3B, W 30
N< ——:': — >0

o 2. 2
4(1-vy)r R 3

L B W 20

N 2 ——, — <0
— - 2 2 3

4(1-vD7m R s

v}

Thus, the upper bounds of stress intensity factor for the first case and
the lower bounds for the second case can be derived either from the energy
W, or what is more important, from the upper and lower bounds of W
respectively, which may be derived from Theorem 1* We shall illustrate
these with the help of examples:

1. Consider a space with an axisymmetric cavity surrounded by a
crack of radius R in the plane x3=0, assuming that a pressure P acts in
the cavity and on the crack. Let d; denote the diameter of the cavity in
the plane of the crack. From Theorem 4.1 it follows that W increases with
the increasing cavity size for a fixed R.

*The closeness of the estimated values of GW/3R in (5.5) and (5.6) to the
true values depends on the ratio between the retained and discarded terms
in (5.2). Inequalities (5.5) and (5.6) become equalities for a penny-
shaped crack in a homogeneous space. It is not difficult to show that
the terms discarded from (5.2) will be small compared to the retained
terms if R/dm << 1 or R/dm >> 1. In these cases, the bounds of stress

intensity factor may be expected to be very accurate. In other cases,
the bounds are only a rough approximation.

104

Workshop

Therefore, in this case we have 6¢/3€m>0 and (5.8) can be used to estimate

the stress intensity factor. Note that by virtue of Theorem 1, we have
2.3

. - . - n PR

Q(El,...,:m)i9(1,£2,...,Em) where W(R,1,82,...,& ,P,E)= —

is the energy of an elastic space with a cavity obtained by any axisym-

metric expansion of the initial cavity in such a way that the cavity

intersection contour with the x3=0 coincides with the crack contour.

Thus, from (5.8) we have

8(1,82,.++5E,)

No= —3E—— W(R,1,E,,...,E_,P,E) (5.10)
4(1-v)12R? m

In particular, for a spherical cavity, from (5.10) we have

. . >
N< 2 W(R,1,P,E) = R (5.11)
4(1-v )m R dr(1-v)

where W(R,1,P,E) is the energy of a space with a spherical cavity of
radius R. For v = 0.25, we find that N< 0,56PYR , and for v = 0.5, we
have N< 0,7PYR . Note that for a penny-shaped crack of radius rg,

2T
ki
a spherical cavity is less hazardous than a penny-shaped crack of radius

_ 3m
ef ~ 8(1-m)

N = P ¥ 0.45 Vry . Thus, a crack of radius R which protrudes out of

T R (for example, T = %WR when v = 0.25).

ef
2. Under the assumptions made at the beginning of 1, consider a
homogeneous body of finite dimensions with a penny-shaped crack. For
this case, Theorem 1 gives that 3®/Bzm<0, and thus the lower bound of N

can be deduced from (5.9). Consider a sphere with centre at the origin
and diameter equal to the diameter of the initial body and a right
circular cylinder, its generator being parallel to the symmetry axis.
The cylinder envelops the sphere. From Theorem 1 it is evident that

d d .
W W (R,=h,PLE,v)> WO (R, gb P,E,0) (5.12)

where WS and WC are the energies of the sphere and the cylinder with the

same crack, respectively. From (5.9), therefore it follows that
2 3B W 3E W
s s e

— 2 2 2
4n (1-v ) R

-2

(5.13)

i

~ TR 2. 7
4m (1-v ) R

The quantitites W, and WC can be calculated from the solutions of the

axisymmetric problem for a crack in a sphere [7] and a cylinder [8],
respectively. Using (5.13) we shall estimate the stress intensity factor
NS on the contour of a penny-shaped crack in a sphere under no load.

Table 1 lists the exact values of NS/Noc taken from [7], and estimated

values corresponding to the middle and right-hand side terms in (5.13)
denoted by XBs and XBc’ and the values calculated from the data reported
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Table 1
R/d; 0.5 0.7 0.8
N /N [7] 1.156 1:32 1.47
¢ 1.08 1.17 1.25
Xpo 7]
1.03 112 1.21
XBC (8]

in [7,81*.

From the table it is seen that the estimated values are quite closg to the
true values. For R/dy< 0.5, the agreement, as would be expected, is even
better.

3. In an infinite body with elastic constants E, and.vl, }et ther?
be a spherical inclusion of radius p with centre at the origin 1?-perf?ct
adhesion with the medium; let the elastic constants of the 1nc1u?10? be
Ey, vi. Assume that a circular crack, w%th constant pressur§ P‘%ct%n§
on its surface, envelopes the inclusion in the plase x3=0 and occupies
the domain p<r<R.

If the inclusion is more rigid than the matrix E,>E;, then we havg ]
99/3£<0 (g£=p/R), and the stress intcnsityrfactor on the contour'of the
crack, NR , is bounded from below by (5.9). Clearly, the quantity

1

p E o B ) ) '
W o Z P, vy > W R > Pyovypoin (5.9) is the potential energy of a
R *E] " =" E _ N
homooenéous body with an a%nular crack and elastic constants equal to the
g 1 . wan
constants of the inclusion. Therefore, from (5.9) we have
P 3E. o] E, _
P SO S (5.14)
;\'R o 4 &2 » 2 €

17 aq (1-v{R" R E,

If the inclusion is less rigid than the matrix, Ey<Ey, then the stress
intensity factor N is found similarly from (5.8) as

Ry
3E o Ey
2 1 -
N. < - ~ Woe—, —, P, v {5:.15)
“Ry— > T . 1
4w (1-viR R E»n
P E: ) . )
The quantity W = , == | p, Vi can be calculated from the data reported in

R E,

*We may mention that Fig. 1 in [8] does not exactly specify the scale
for the vertical axis. The corresponding reduction coef§1c1ents can
easily be established with the help of formulae (3.10), (3.11) and the
data listed in Table 1 published in [8].
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[9], which gives the numerical results of solution of the problem of a
flat annular crack in a homogeneous elastic space. For example, for
Vi =va =0.3and R =1, p = 0.7, according to [9]:

2 E oo 2 E
- P sl 5 | 27 J
RI:“ G P 0.027 , I\JRZE_

-

2
N P 0.027 (5.16)

5

b

4. Let the piecewise homogeneous body described in Section 1 be an
infinite body with an inclusion in perfect adhesion with the body. A
penny-shaped crack is wholly contained within the inclusion. The elastic
constants of the inclusion are E1,vy, and of the surrounding medium are
Eo,vy . If E1 > Ej, then from (5.9) we may estimate the stress
intensity factor from below. Using Theorem 1 we may write the following
sequence of inequalities:

E, o E,
WiWS R, ‘ﬁ‘, E—l—,\)]_ >WC R, E’ E‘{, vy> WM R,w,E]_,\)] (517)

where Wg(R,p/R)EZ/El,vI) is the total potential energy of the body with

spherical inclusion of radius equal to the diameter of the initial
o E

W R, —

c R E,
inclusion, its generator being parallel to the axis of symmetry of the
body and W_ is the energy of space with constants E1,vy and containing

v

- Vi 1s the potential energy of a body containing a cylindrical

the same penny-shaped crack. Substituting (5.17) into (5.9), for E,>E,
we obtain

"—?NMT* S ”"’*“‘—“"vz-" 2 = N ) (5. 18)
™ 4w (1-vq) R

Here N_ is the exact value of stress intensity factor for a penny-shaped

crack in a space with constants £y,vy.  Similarly,
rigid than the matrix Ey<Eg, by virtue of (5.8),
inequalities of opposite sense:

for an inclusion less
we obtain a svstem of

38, W 3E W 3E, I ,
LT T S e ey € e 3= N (5.19)
41 (1-vy) R dm (1-v1) R™ T an"(1-u]) R

We may mention here one qualitative implication that follows from (5.18)
and (5.19):

In a space with a penny-shaped crack, if the rigidity is decreased
(increased) outside some axisymmetric domain containing
stress intensity factor on the crack contour decre
increase).

a crack, the
ases (does not

5. Consider a cylinder containing a penny-~-shaped crack
adhesion with a rigid medium and under conditions of
at the boundary. Then

in perfect
sliding contact

3E w 3E ) .
DT S 1o S ST .
Telr,c)— 32 2. 2 ~ TE TR T (5.20)
47 (1-vy) R 4 (1-v7) R
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where N are the stress intensity factor and total energy

; . W
c(r,c)’ “clr,c)
for the case of perfect adhesion of the cylinder to the medium and

Wc(g o) is the total energy for the case of sliding contact at the

A &

interface. The values of Nc(r & are reported in [10], while the values
of wc(s,c) in [11]. 1In particular, for R/d; = 0.6, Nc(r,c)/Nm 0.87,

J ! = [ is O
and (Nc(r,c)/Nw)B 1.14. It is clear that the agreement between the

estimated and true values becomes worse as R/d; approaches unity. This
is natural because in a problem with sliding contact, the value of N
will increase without bounds as R/d;+ 1, while in the case of perfect
adhesion there will be no such effect. Nonetheless, it should be borne
in mind that the elasticity problems for a piecewise homogeneous body
under sliding contact at the boundary are solved in far simpler manner
than the corresponding problems under perfect adhesion at the boundaries.
Therefore, the bounds of stress intensity factor for R/di~ 1 in perfect
adhesion problems can be obtained using the energy determined from the
solution of the simpler problem with sliding at the boundaries.

5.2 If a crack grows being in the state of limit equilibrium, or at
least there exists such a value of stress intensity factor N, that the
crack growth can be disregarded for N< N,, then it is possible to derive
the necessary conditions for a crack to be non critical directly from
the energy bounds. Indeed, by Irwin's formula, to N, there corresponds
some value

x 3 * (5.21)

which is the minimum necessary work that has to be done to increase the
area of the crack by unity.

Then, evidently, an increase in the crack area from S_ to some value
S1 should call for an energy expenditure not less than T*(Sl—SO)‘

Therefore, if we could demonstrate that the external forces and potential
energy of deformation do not provide the necessary amount of energy at
some stage of crack growth, that would naturally imply that the initial
crack is not critical.

Suppose that the external loads are specified. Then it is natural to
construct the corresponding energy diagram for the total energy. Let
the initial crack contour To of area So be given. If the crack is

dangerous, then as the crack grows under invariable loads, the area §
will increase and the total energy will take the value W(S); W(SO) = WO
1If we could show that

min [W(s) - Wo - T.(S - SO)]<O

oS T (5.22)

then it would be a sufficient condition for the crack to be non critical.
Of course, a sufficient condition is also given by a more approximate
inequality in which W(S$) is replaced by some majorant, and Wo by some
lesser quantity. This gives a means to make use of the energy bounds.

In order to estimate the lower bound of the energy W , we may either
take a more rigid part of the body, or replace the c8ntour Tro by a
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simpler contour I'y, enclosed in it, or use both these two approaches.

The concepts of extremal contours can be used in finding the upper

bound of W(S). From the already proved inequality W(S)< W* (S}, where
W*(S) is the energy of the body with the crack, whose contour coincides
with that of an extremal one of area S. If we modify the body, say

by decreasing the rigidity of the material at some of its subdomain, then
the corresponding function of energy of extremal contours W;*(S) will
majorize the function W*(%):

Wi* (S)> Wr(S) {(5.23)
1
Indeed, let I' and T be the extremal contours of area S in the initial
and less rigid bodies respectively. Then on decreasing the rigidity
of the initial body without altering the contour T', we obtain

W(T) = W(S) < Wi (D)

on the other hand, by the properties of extremal contours in an
"unaltered'" body, we have

Wi (D)< W*(S)
- 11
Hence, (5.23) follows from this inequality.

6. Bounds for certain integral characteristics of solutions of
contact problems of elasticity

Using Theorem 4.1 and arguments similar to those applied in proving it,
we may construct double-sided bounds for the displacement of a die (or)
the force which acts on the die when the contact area, die shape,

and contact conditions vary. Similar theorems are known for contact
problems of perfectly plastic bodies.

Theorem 1: Let a rigid die with sharp edges and flat base © be pressed
into an elastic body by a force acting normal to the die base so that
the die moves in the direction of action of the force. (The die is
either in sliding contact or in perfect adhesion with the elastic body.)

If the rigidity is decreased (increased) at some part of the body, for
the die displacement to be the same it is necessary that the force be
diminished (increased).

Indeed, the force is

p o= S5 (x)do
e B (6.1)

Therefore, by virtue of Corollary 2 of Theovem 4.1 (inequality (4.10))
for g(x) = h = const we have

25 ) I~D
hiz2 hPi 5 BrE (6.2)

Corollary 1

The force driving the die being constant, a decrease (increase) in the
rigidity at some part of the body causes an increase (decrease) in the
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displacement of a die with flat base. (This is an obvious sequel of
Theorem 1).

Corollary 2

In order that two smooth or perfectly adhered dies with flat bases © and
$21(2>Q)) may have the same displacement, it is necessary that the force
applied to the die Q should be greater than the force applied to the die
21 (P>Py).

From Theorem 1 it follows that the transition from the die 2; to the die Q
may be regarded as an infintely great increase in the rigidity of the
initial body on a part of the boundary Q/Qy.

Corollary 3

For the same driving force, on passing from the die ©; to the die Q>80 ,
the displacement decreases. (This is a trivial consequence of Corollary 2)

Theorem 1 and its corollaries 1, 2 and 3 give a means for constructing two-
sided bounds for the displacement of dies of complicated shapes with flat
base § from the solution for dies of simpler forms whose bases §0; and Qp
are inscribed in or circumscribe Q : OF @<Qy. Examples of the application
of such considerations for a smooth die are given in [12-15]. By way of
example we shall estimate the displacement of a square die in perfect ad-
hesion with a semi-space on the basis of the exact solution of the problem
of a circular die in adhesion with a semi-space [16.

Let 24 be the side of the square. (onsider two circular dies O, and Sip
of radii o and a/2 respectively. According to [16]

1 P

"1 168 (N o

o 1 P -
Wy o= 166 (SU«—-X—)— 575 6.:3)
where 8 = %-zn[(3u+x)/(u+x)],x and p is the Lamé coefficient. Therefore

Wp < w < Wy
Lf the approximate value of w is taken to be }(wi+wp) then the error in
the determination of w by means of (6.4) and (6.5) will not exceed
[(wluw2)/(w1+w2)] = 17%.

Corcllary 4

Consider two dies with nonplanar bases of arbitrary configuration with
sharp edges, assuming that their contact areas are the same

X3 = -y (x,%2) £ 0, x3 = - ¢y (x3,X) <0
Y1 (X1,Xx2) < ¥ (X1, Xp)  , V (x1, x)eQ (6.5)
Then, for the same driving force P, the displacement of the enveloping
die Yy is less than that of the enveloped die y;. This is proved by
applying Corollary 1 twice : by passing from a die with flat base to the

die ¢, by successively increasing the rigidity in the region between the
flat base and the surface Wy (x1,x) and between the surfaces Yo (xy,x2) and
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v (x1,x2).

In particular, for the same driving force P and contact area @, the dis-

placement of a die with nonplanar base is less than that of the enveloped
die with flat base.

In Corollary 4 the contact areas of dies have been taken to be equal.
However, as in the proof of Theorem 6.1, we may show that if the initial
die with contact region © and surface ¥(xy,xp) is replaced by some other
die of contact region $21<Q and surface y;(x1,x5) < plx1,%x0) 5 V(X1,x2)eR
then the displacement increases for the same driving force.

The same considerations can be used to prove :
Theorem 6.2

Let a die with flat base  of arbitrary configuration be pressed by a
force P into an elastic body so that one of the following three conditions
is satisfied : 1) no friction at the contact region, 2) friction forces
act at the contact region, 3) adhesion exists between the die and the
elastic space. Then

Wy > Wy > Wy (6.6)

where wy, wy, w3 are the displacements of the die under contact conditions
(1), (2) and (3) respectively.

Proof :

First we shall establish that Wy > wo. Under contact condition (1), the
total energy of the system is

Wy () = fmﬁl) dt - wyP (6.7)

v
where V is the spatial domain occupied by the body.

Choose as the admissible displacement field of a smooth die the field of
displacement corresponding to the action of a die under condition (2).
Then, by the minimum potential energy principle, we have

Wp(01) < Wy(Up) = A(Up) dr - woP (6.8)
v

On the other hand, when the die acts under friction

Wy (Us) =fA(i§2) dv - [waP - W ] (6.9)
\I Wi

where W - is the work of friction. By virtue of the Clapeyron theorem
for equiflbrium, for a die under condition (2), we have

- _ l 5 .1‘ .
Aluz) dt = 5 woP - 5 W (6.10)
and under condition (1)
_/A(ffl) dtv = +w;p (6.11)
¥ 2
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From (6.7), (6.8), by virtue of (6.10) and (6.11), we obtain

1 S 1
P, i-wZP - E-W¢T 2 = E—Wlp (6-12)
or
1 er
Wp S W1 - 3P {6,:1.3)

Since the work of friction (- W ) is negative, Eq. (6.13) shows that the
displacement under friction at Yhe contact region is less than the dis-
placement under sliding contact.

The inequality wp>ws is proved in a similar way by taking the field of
displacement corresponding to the action of a fully connected die in
equilibrium as the admissible displacement field for the action of a
die under friction.

APPENDIX A

Consider a three-dimensional elasticity problem for a layer of thickness
H = 2h containing an opening-mode crack occupying the domain G in the
midplane x3 = 0. Assume that there are no tractions at the layer faces
and only normal wedging loads q(x1,xp) act on the crack surface. The
boundary conditions of the problem are thus of the form

x3 = 0 o33 = - q(x1,X2), (X1,x2)eG, 013 = 023 = 0

x =+h 033 =o031 =032=0 (A1)

We shall reduce this problem to an integral equation for w(xj,xp) which

is the displacement of points on the crack surface in the direction of x3.
For this purpose, as in the problem of a crack in an infinite space, we
shall first calculate the stresses at the layer boundaries x3 = + h
assuming that the function w(xy,Xx2), i.e. the shape of the crack, is
known. Then we shall write the solution to the problem of a layer (with-
out cracks), whose faces are subjected to the action of tractions equal
but opposite to stresses calculated in the first problem. Finally we
shall compute the sum of normal stresses which arise in both the problems
at the crack and then equate it to the given loads. As a result, we shall
obtain the required integral equation.

In expressing the solution of a problem for an infinite space, it is con-

venient to use the Papkovich-Neuber representations [5,17]. 1In our case
. . 3 .
o 9By 9B . By 9B
ST T3 5xy T osxy - 33, T oBxg
aB3
¢ o= 2(1 - v = X s 2
W= 2(1 - V)By - X3 3= (A.2)
2. 2
1o P
2y 913 3 9X19X3 > 2p 923 -3 dXp0X3
2
3By 9 By
s T Hen ¢ X TE (A.3)
: 3X3 2%,
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where 3B /d3x3 =

1 -2 : rovi .
X3 =0 [97])) ( v)B3 (by virtue of symmetry relative to the plane

The function B3 can be represented as

By & - 1 3 .[/’T(ﬂl,ﬂz)dnldnz
4(1-v) 9x3 2 5 (A.4)
G ‘/(xl'nl) +(X2-—n2)2+x3

Then from (A.2) and (A.4) we get

I‘(Xl,x » 3, 5
w(x],Xx2,+0) = 2) (x1,%2)€G "

- «5
0 H] (Xl,Xz)EG :

5 s, o . o :

onethzhgrsﬁzct302 r(x;,xz? is identical with the displacement of points
ack surface in the direction of x For i i

on th ! e in i X4 or a crack ini

space, r(xy,X;) satisfies the following equation ek inan infinite

2(1-v r(ny,ny)dn;dn
- _,~E_l-q(xl’xQ) = Axl < s 12 1 2
- E “

; P A.
G /(Xl—'l)a+(x2- 2)2 ( 6)

It § i ¢

traéifgigeigo?xfn;e?twgi}c:;ry out further calculations with the Fourier
S ) > X2 1 e parameter £ = (£7,% i iffi

to prove (see, for example. [100) thes (21,€2). It is not difficult

By = =t pe-XlE]
45 BTy (A.7)

he st resses in th ar 2 1 & iv . n expressions
I £ a5 s P
5 e lane x f ire given by the followi g X

1 5 g =l

5 e = g E @) =
%j‘ (xy,x0,h) = _3__p‘ (1) = 1

k Xy & 2 (A.8)
L_( . ki -1 -~
7y ailankl = 3ovy Fe {‘€|r(1+hf€l)e_h’5l =« (A.9)
where
e SNSRI
2(1-v) re (A.10)

Using the formulae given in [17]
Fourier transforms "
conditions

il |, we shall now write the expressions for
: $ses in a layer under two types of boundary

a) xz3=+h , o33=-0, g4 = 530 = 0 i
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b) x3 =+h , 033=0 , 031 =+71T1 , 032 =+ Ty (A.12)

According to [17], under the conditions (a), we have

_1
5§30 = th ch(hlg])ch(xslE])-xash(n|E])sh(xsle))+ €] shinle])-

- ch(xzle])} 53£§l-, & = 2h|g| + sh(2h|e])

»:
559= -ig1{h ch(nlg]shixs|g] - xschixs|g[Ishine])y 52
~(a) . 11} 20
0357 = ~ig,{h ch(h|E|)sh(x3|E]) - xzch(xs|&])sh(n|e]) T
(A.13)
For tangential tractions of the type (b), according to [17], we have
2
27]g
5880~ (xashixslgl) chnlg]) - b shanlelrenexsfelyy 2EL
ég?)z -iE€1F (X3,E1,E9,1)
5590 ~igsF(xs,80,82,7) ) (A.14)

where

F(x3,E1,80,7) = {x3ch(x3|&€]Dch(h|g]) - h sh(xs|g|)sh(h]z])

a5 |
yencnlg]yy ZELEL

=

1
+ |z sh(xy

&

Now, using (A.13) and (A.14), we shall calculate the additional stresses

gggd)(xl,xz,O) which arise in the problem of a layer without any cracks
under the joint action of loads (a) and (b)

4 .-hlE]:
. :-L’LL_&J__.‘__X L (h{z|ch(n

2(1-v) gggd)l £])+ sh(hlgl))
2 = X3=
2 2
x (1« hlg]) +n [g] shenlg])) (A 15

With the help of Fourier transforms (A.6) and (A.15), finally we obtain the
following pseudo-~differential equation [18] in r(x;,x5)

2nF _{[-]g

« K(h, |E)IE(E1,82)F = - géﬁlﬁl—q(xl,XQ)(x},xz)eG
(A.16)

where
Keh, lg]) = & Knlg])
2. B okl
_ 2hlel(1+2nle]+2n” |g] 2h1£|)

-e
Kihig]) > - i
le] an|¢ [+o2n E]_o-2n]E]
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APPENDIX B

To establish the method of convergence of successive approximations applied
to Eq. (2.2), we shall first find the magnitude of (qi+1—qi). From (2.6)
we have

U S ) e
YGer T Y S FANY zn[/m’lgl)[fi ri_qlde (81
From the definition of T it follows that

U & - =V .2
ENIEE Y -UZ721 g 5 o W (B+2)
¢

Thus, with the help of (B.1) and (B.2), we obtain

uR S
3 N T ¥
Wi+1_wi|;Rw;qi+1_qi'f»2(1-V) 2wdé7k(h

£ )/][wi-wi_lldeg
G (B.3)
Integrating over the domain G we get
I s f
Vi< [C h, lds]m =) K(h|g[)de (B.4)

After changing to polar coordinates in the plane n = hf the integral of
K(n) in (B.4) takes the form

o
-2r

O Y | L2 r (1+21+2r -e )dr
T, = % [[K(_hjé YdE = F/ T (B.5)

0 dr+e -e

It is not difficult to calculate the numerical value of the integral
which is

4.232
sy (B.6)

~

The integral of (R,1) over the domain G is half the volume of a crack
occupying the domain G in an infinite space and acted upon by a constant
load of intensity 1 on its surface.

If the area of the domain G is S, then as shown in Section 4.2, the volume

of crack is not greater than the volume of a penny-shaped crack of the
same area, i.e.

3/,
A(1- 3 2
szlg;lds < A (5, (8.7)

G H

Then, due to (B.7), from (B.4), we have
1 /2

i+1 -2 3 Vi = e Vg (B.8)

v
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The convergence of successive approximations method is guaranteed if
e, < 1, which holds true when

1.
S%/h < 1.26 (B.8")

If only the crack diameter d is known, then we can derive an estimate less
accurate than (B.8). In this case we can write

3
/j;{w&ds =X a - v (B.9)

where ¢(g) is half the volume of a crack occupying the domain g of diameter
1 similar to the domain G. According to the theorem proved in Section 1,
we can find the upper bound for y(g) by calculating half the volume of a
penny-shaped crack of diameter 1 enveloping the crack g

21 1
lff/ - =1
v(g) <3 ok 1 - rdrdé = {3 (B.10)
From (B.4) we obtain
3 -
Yysi < (d|h) 0.353 v, = eV, q (B.11)

Successive approximations converge if g w1y die., if (dlh)< 1.42 or
(ajm < 0.71.

The bounds (B.12) and (B.8) are coincident only for a penny-shaped crack,
a fact which can be easily verified.

APPENDIX C

We shall first estimate the difference q'—q?. We have

o W 1 / -, -i, X2
q'-a1 = 7Y "“Tf“‘“h[f (;)e (;— n o+ }—l-nz)_roCO)]ﬁ'&.v

2mh
{(C.1)

Now express the right-hand side as a sum of two integrals by adding and
subtracting the expression

.o X
reoye *C 700 )
in the integrand of (C.1). Thus we get

1
q'-ai = sy 7 (v 12D (c.2)
¥ 27h

where
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Y

I =ﬂx(!nl)[ic%3-%(0)]e"i(
s - s X .
T =jZK(lnl) [rm)e‘l(i ) -ro(O)]dn (c.4)

tTransform the integral 1I; as follows. Since

. i(%’“)
r(%) = w(uy,uz)e du
r(0) =ffw(u1,u2)du

and changing over to polar coordinates in the plane n (ny=pcos8, np=psind)
we obtain

+1) g (c.3)

=%

27 o
- A
I, = uan(p)3v4?;(u1,ug)[elp“u—%]dug e X dpd0 =
o o
2m
:/]w(ul,uz)/ K(p) [cosp(Zu—ZX)—cospZX]odpde C.5)
& e o
where
uy u X X2
0 = _Z &3 S i
Zu n cosf + T sind , Zx h c056+ﬂ—51n6
Now we shall estimate I; . We have
2m = 7
ITil = i[g(ul,uz)ffK(p)[2sin(g§9—)sinp(Zx—l—zu)]ododeduk_
o Yo -
21
3
< .}/;(ul,uz) “/nJ/‘K(p)Zu(ZX—%Z Yo dpde|du (C.6)
u
G o “o
_ 2 2 )
Since ) //zz;uz v/?;gl-ul) +(2x5-uz)
Zu(Zx-é— Zu)= T " sin(@—q:l)sin(e—w)

the inequality (C.6) may be extended

2 2 2 2
J(]ﬁ 1 //u1+Uz /gEX1-u1) +(2x2-uz) 3
[1:] iG w(uy,upl2m 5 h K(o)e de<
[s}

h
2 f 3
< Y2nd ) K(p)p do/[v(ul,uz)du (c.7)
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where due account has been taken of the fact that
2 2 2
Y(2xy-u1)  + (2xp-up) < 2(3d)
In (C.7) the integral with respect to p is easily calculated and it is

equal to

£

3
v/nK(p)o do = 29.702 (C.8)
0
Further
[!fw(ul,uz)du[ = [j[wo+(w~\vo)]du]§j;odu +[_/]-w—woldu

(C.9)

By definition
v :_éﬁ? w - wo[ du (C.10)

and according to Appendix B

Vo SV + Vo + L0 <

(C.11)

3
where € = 0,353 (d[h) .

Thus, from (C.7), by virtue of (C.9) and (C.11), we get the bound of I,

[11] < 3v2n.29 702(902( w du + V] ) C.12
= 27025 (v, % L 12)

Using the expressions V; = Vos and Vo’ we may rewrite (C.12) as follows

£

. (C.13)

2
[1:] < 3 /3}29‘702(39 VoL o+

Now we shall derive the bounds of the integral I,. After changing over to
polar coordinates in the plane n, we obtain

27 4
[/K(D) [‘(ul,UZ)eglp“x - w (ul,ng)]dupdpdel'
oo G 9

27 ®
{/G.;f.([ ke [w(ul’u2)c°s(°ZX‘WOCU1,uz)}odpdegdu
L7
'a/{/j[K(D)[(W(UI;UZ)*WO(ul,uz))cos(ozx)

(o]

[15]

i

i}

N O

wo(ul,uZ)CI—cos(pZX)i]x pdpdegdui {Ay+ Ay} {C.14)
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)
4T >

A] =%
2 co
Ap =; I%ji)rK[O)Wo(ul,uz]fl-COS(OZX))OdpdGDdug
G o

[/K(p)[(w(u1,Uz)-wo(ul,Uz))COS(QZx)]ododGIduz
- o

(C.15)

In the first integral A; in (C.15), substituting unity for cospr, and then

integrating with respect to 8 we get

ZWVmJ/POK(p)dp
(¢}

\/’1

Ay

i A

where

Vo <

1 - ¢
The last inequality follows from (C.11). The integral is
oK(p)dp = 4.232
fo]

Therefore

vy
M £ g (27)- 4.232

(C.16)

(C.17)

(C.18)

(C.19)

The second integral, A,, after changing the order of integration, takes

the form

Ap = ﬂvo(ul ,un) IAIdu

]

27
A= VZ];/fK(p)(l-cosozx)odade
(o)

Introduce the function

where

oo o

Ky (o) = -/rK(r)dr ; Kp(p) = -/Kl(r)dr
2] (e}

and integrating (C.21) twice in parts, we find that
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217, o0, L 2,
A= /Z;/Kz(p)cos(pzx)dpde =/;o) /Zxcos(ozx)dedo (C.23)
(e] (o] (o] o]
2 2

Xy + ‘(2 e X1
Since Z, = =p——=sin (8-¥) , V = arctg o=

(C.23) can be rewritten as

2 2

2 o 2m /2 2
X1+Xp 2 voxgpExy
A= = [ Ko (p) sin (8-y)cos — sin(9~y) deodo (C.
h o o

Substituting unity for cosa, we get

2 2 0, P

X1+X2 - .

N :—~—z—w/K2(p>dc < 6 /szdo &
Q 0

h

llence, after integrating twice in parts, we obtain

% 2
1.2 x 3 d ) fip
[a] < (%} 5(/&(“0 do = (f) m- 14.851 (G-
D
Thus ,
2 a4 9
lag]< [ oo o1 sz &) r-14.851 = v () v-14.851 .
Finally, by virtue of (C.14), (C.19), and (C.27), we obtain a bound for I,
eV 4.2
Tp < © _ 2g-4.232 + V_ (%) 7-14.851 (C.28)
2 3 T o'h

From (C.2), with due regard for (C.13) and (C.28), we now get

2

. ) d ey
[q'-q}| < ——t—{V () [3/2-14‘851'
| ~'2(1-v)3 o*h 1

+ (7.425 +(@/h)- 2223

According to (B.11) and (B.12)

(

e
w

LI
o

l?’ ——v_ =
h 2(1-n) 12

4.232)]} (C.29)

Workshop
Therefore
5

lq' - q?i i,(%9 = =m (C.30)

ol
i

|

.
n

Hence, for (d/h) < 0.7 (m < 1) we have

q' = qf *+ @ -q)) >af - lq -4af] >0 (c.31)
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