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SURVEY OF RECENT WORK ON THE EFFECT OF THE ATOMIC STRUCTURE'S
DISCRETENESS ON CLEAVAGE CRACK EXTENSION (N BRITTLE MATERIALS

E. Smith*

1. INTRODUCTION

The excellent pioneering work of Taylor [1}, Orowan [2] and Polanyi [3] on
the one hand, and Griffith [4] on the other, has led to the acceptance

that a crystalline material's mechanical behaviour, and more particularly
its plastic deformation and fracture characteristics, are crucially depen-
dent on the mobility of dislocations and cracks in the material. Further-
more, it is also accepted that in developing an understanding of these
processes, the simplest approach is to use a theoretical model in which

the real material is rvepresented by an elastic continuum. If such a model
is used to describe a perfect dislocation, there is no resistance to the
dislocation's movement, because in the real situation the crystal structure
reverts to its original form following the passage of a perfect dislocation
through the crystal. However, as Griffith clearly appreciated, movement

of a cleavage crack tip is associated with a finite resistance even with

a4 continuum model, since the original crystal structure is not retained
after the passage of a crack tip. This is because atomic bonds break
irreversibly, a process that is incorporated into the continuum description
through the surface energy term Y; a crack tip is therefore analogous to an
imperfect dislocation, with the surface energy corresponding to the fault
energy associated with the imperfect dislocation's movement. Moreover,
using thermodynamic arguments for s perfectly elastic solid, Griffith [4]
showed that with prescribed values of Yy and the applied stress O, there
ists a critical crack ze below which a crack should contract, and above
should extend unstably, eventually leading to complete failure of
a so0lid. Thus enly a crack having the critical size can be in equilibrium,
which is of the unstable type, and the critical instability stress as a
function of unstable crack si is shown schematically in Figure 1.

on

Use of a continuum-type model, as in the preceding discussion, does not
really account for the atomic structure's discreteness, since the y term
merely averages out the atomic bond rupture processes, and does not in-
corporate the interplay between the breaking of individual atomic bonds in
the vicinity of a crack tip. This neglect of the atomic structure's dis-
creteness when using a continuum-type model was vecognized over thirty
years ago by Peierls [5] in the case of a dislocation. Using a model that
allows for lattice discreteness within the crystal planes immediately
adjacent to a slip plane and their interaction via an appropriate inter-
atomic force law, the remainder of the material obeying the classic laws
of linear infinitesimal clasticity theory, Peierls [5] and Nabarro [6]
showed that discreteness can have a marked effect on the mobility of a
straight dislocation, by virtue of the lattice providing periodic barriers
as the dislocation moves from one equilibrium position to the next; the
resistance to movement is greater the smaller the dislocation width, i.e.
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Subsequently, more detailed consideration has been given to the problem,
and it is now generally accepted that there is a good correlation between
a dislocation's mobility, its width, and also the type of atomic bonding.
Thus, if the bonding is non-directional, as in an ideal metal which is
less resistant to elastic shear than tension, a dislocation is wide and
very mobile, whereas if the bonding is directional, as in a covalently
bonded material which is more resistant to elastic shear than tension, a
dislocation is narrow and its movement is difficult, being manifested in a
high flow stress; these general conclusions are supported by experimental
data, which has been admirably reviewed by Kelly [7].

Until quite recently, little consideration has been given to the way in
which the discreteness of the atomic structure affects cleavage crack
extension in a crystalline material. However, during the last few years,
several investigations have led to the very important conclusion that
stable crack tip configurations can exist in the sense that, within a range
of crack tip stress intensifications, a crack can extend or contract in a
stable manner as the stress is raised or lowered. This is because the
atomic discreteness provides discrete barriers to a straight crack front

as it moves through the crystal lattice, and is a behaviour that contrasts
markedly with that of the Griffith-type continuum model in which the solid
can sustain only cracks which are in unstable equilibrium. This phenomenon
of 'lattice trapping' of a straight crack tip has been the focus of recent
investigations, and this paper's purpose is to survey the main conclusions
arising from this recent work, particularly with regard to the effect of
the nature of the atomic bonding on the magnitude of the lattice trapping
effect. It will be shown that lattice trapping is*not likely to be respon-
sible for brittle fracture energies, as determined via appropriate cleavage
experiments, being very different to values of y derived with the aid of
an appropriate force law; the main significance is that lattice trapping
allows a crack to propagate, within a range of crack tip stress intensi-
fications, by a thermally activated process. This effect has been observed
experimentally, as will be emphasized in the paper, but more importantly,
the lattice trapping models provide a basis for understanding the effect

of aggressive environments on cleavage crack extension, a problem that is
of considerable technological significance.

[1. SURVEY OF RECENT THEORETICAL WORK

The first investigation on the effect of the atomic structure's discrete-
ness on brittle cleavage crack extension (i.e. cleavage without any
accompanying plastic deformation in the form of dislocation generation or
mobility) was that of Goodier and Kanninen [8]. Using a numerical pro-
cedure based on a Peierls-Nabarro type approach which allows for discrete-
ness within the atomic planes bounding the cleavage crack, the remaining
material obeying the classic laws of linear infinitesimal elasticity, they
investigated a model appropriate for a two-dimensional cubic lattice, and
determined the critical crack extension stress for a range of idealized
force laws describing the interaction between the atoms across the cleavage
plane. They showed, that (a) linear cut-off and sinusoidal force laws are
both characterized by the existence of stable cracks which are absent in
the Griffith continuum-type model, (b) the critical crack extension stress
exceeded that given by the Griffith relation, using a value of Y relevant
to the force law. These results provided the first demonstration of
lattice trapping and of discreteness having an effect and providing a

a resistance to the mobility of a straight crack front.
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Thomson, Hsieh and Rana [9] used an analytical procedure to investigate a
Peierls-Nabarro type model, and by introducing a series of simplifying
assumptions, particularly concerning the crack tip profile, were able to
relate the magnitude of the discreteness effect or lattice trapping effect,
as reflected in the ratio of the lower and upper critical crack extension
stresses (see Figure 2), with a parameter which is representative of the crack
front width (i.e. a measure of the spread of distortion along the cleavage
plane). This conclusion is analogous to that for a dislocation where the
stress, usually referred to as the Peierls-Nabarro stress, to move a dis-
location increases as the dislocation width decreases, width in this case
being defined as the spread of distortion along the slip plane. Smith [10]
has also used a Peierls-Nabarro approach that to some extent circumvents
the limitations of Thomson, Hsieh and Rana's investigation; using a simple
Mode III model (Figure 3) to simulate the Mode 1 situation, he systemati-
cally related the magnitude of the lattice trapping effect to the crack
width, and confirmed Thomson, Hsieh and Rana's conclusions. Smith's
approach is applicable for the range of force laws

P 2Wa)

N

(1)
1+ 16m*(w/a)® Y
where p is the stress acting across the cleavage plane, 2w is the relative
displacement of adjacent atoms in the two planes bounding the crack, a is
the distance between these planes, b is the atomic spacing in the direction
of crack propagation (the lattice is assumed to be two-dimensional), [ is
the shear modulus, and m is a parameter (Figure 4). Maximum and minimum
values of the applied stress ¢ arise respectively when € = 0 and b/2
(Figure 3), their magnitudes for a macroscopic crack of length 2¢ being

- B
1“g e
Oax = ;n‘f:—; coth (_’_li) (2)
and
5 ~ 12
) “a na
“min ~ Fg;f: i (§K> (3)
whereupon
= tanh (2;) (4)

Stable equilibrium atomic configurations exist between the stress limits
Opmin @nd Opax and the ratio 0pi,/0p.4 may be regarded as a measure of the
lattice trapping effect, i.e. the effect is large when this ratio is small
and small when the ratio approaches unity. Furthermore, the instability
condition associated with a purely continuum model, and which corresponds
to the Griffith relation, is

Fenrpp = (apy/me) 2 (5)

where the surface energy Y relevant to the range of force laws (1) is
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o0 TR .
1= [ paw - 12 (6)
0 Sm®
It must be remembered that expressions (2) - (5) refer to a Mode III model,

and 1 should be replaced by u/ (1 - v) when they are applied to the Mode I
situation, v being Poisson's ratio. The crack front width is defined to

be that distance from the crack tip along one of the bounding planes where
the displacement is a half of the crack tip value. This width is calcul-
ated to be 15a/16, whereupon expressions (2) and (4) show that the magni-
tude of the lattice trapping effect and the critical crack extension stress
both increase as the crack front width decreases. These conclusions and
indeed those of Thomson, Hsieh and Rana are applicable only for a specific
range of force laws (see Figure 4 in the case of Smith's analysis); con-
sequently such analyses are somewhat limited in their scope, particularly
if the effect of force law and the type of atomic bonding on the lattice
trapping etfect are to be assessed. To attain this objective the approach
must be broadened, and as a first step useful conclusions may be reached
merely by using very simple physical reasoning procedures [11]. As already
indicated, dislocation width can be correlated with the type of atomic
bonding, a relation that may be seen by examining an idealized model of an
edge dislocation. In Figure 5b where the material's elas > shear resi-
stance is low and the planes normal to the slip plane are flexible, the
dislocation is wide, while in Figure 5a where the elastic shear resistance
is high and the planes normal to the slip plane are not so flexible, the
dislocation is narrow. Similar simple physical arguments may be used for
a crack, by removing the sciated extra half-plane of atoms associated
with the dislocations in Figure 5. Thus if the elastic shear resi

tance

is low, the atomic planes parallel to the crack are flexible and the crack
front width is small, while 1f the elastic shear resistance is high, these
planes are fairly rigid and the crack front width is large. Taken together
with the correlation of the lattice trapping effect with crack front width
arising from the Peierls-Nabarro type analyses [9, 10], these simple
arguments suggest that the trapping effect is greatest when a material's
elastic shear resistance is low and least when this resistance is high.

It is obviously desirable to confirm this viewpoint using more rigorous
methods, and with this in mind, Thomson, Hsieh and Rana [9] examined a
very simple model (Figure 6), which is similar to the Frenkel-Kontorova
model [12] of a dislocation; the planes bounding a crack are represented
by chains of atoms that are linked by two types of spring: lateral bend-
able springs link the atoms within each chain, while the two chains are
attached by transverse stretchable springs, both types of spring being
linearly elastic. The transverse springs rupture upon the attainment of
a critical displacement or tensile force, while the applied stress is
represented by the force P applied to the terminal atoms in the chains,
and the crack surface by atoms whose transverse bonds have ruptured; with
this model a material’s shear and tensile elastic resistances are simu-
lated by respectively the bending and transverse stiffnesses of the two
types of spring. Lattice trapping is observed with this model, its magni-
tude increasing with the ratio stretchable spring stiffness: bendable
spring stiffness, in accord with the conclusion reached by simple
physical arguments, since the bLending stiffness may be associated with a
material's elastic shear resistance.

However, with this model, Thomson, Hsieh and Rana did not take the inter-
mediate step of quantitatively correlating the lattice trapping effect

with crack front width. Accordingly, Smith [11] considered an cven simpler
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lattice trapping effect. When the inequality sign in (10) is reversed,

the situation becomes more complicated, but a detailed consideration of
the system's equilibrium again shows that the magnitude of the lattice
trapping effect increases (i.e. P1/Py decreases) as the force law becomes
sharper (i.e. t/q becomes smaller). Indeed, whereas both Py and P,
increase with t/q, assuming q remains constant, the difference between them
is always Lq, as is also evident by examining the detailed results for
small t/q values (i.e. those satisfying (10)).

Now consider the force law (Figure 10) for which R(u) = [Lg/ta][(t+q)a-2u]
for qa/2 < u < (g+t)a/2 while R(u) = 2Lu/a if 0 < u < qa/2.

Detailed analysis for this force law shows that provided retation (10) is
satisfied, equilibrium atomic configurations are possible when Py < P < Py

where
Py Y e |
and
p
ol o pFTITE )
2y AR (15)
B
whereupon
[ (16)
"y (VT + X + 1)

an expression which clearly shows that the lattice trapping effect is more
pronounced the steeper the descent from the force law maximum, i.e. as t/q
becomes smaller, and also as A becomes smaller. [xpression (16) is valid
provided the descent from the force law maximum is sufficiently rapid that
t/q is less than the value given by expression (10), and again the upper
limits of t/q for various values of t/q are shown in Table 1, which
therefore indicates the range of force laws for which (16) is valid.

the limits, Py and Py are equal and there is no lattice trapping. However,
this state of affairs is unique since with t/q values slightly in excess

of the critical value, P and P, are different and there is a lattice
trapping effect; the maximum force (Py) situation is associated with an

atom being subject to maximum restraint and another atom with a displacement
on the decreasing part of the force law, while the minimum force (P;)
situation is associated with an atom just having lost its restraint with
another atom having a displacement on the decreasing part of the force law.
As t/q increases, there are other unique values of t/q for which Py = P,

and there is no lattice trapping; each of these unique situations corresponds
to the existence of equilibriwm atomic configurations with an atom in the
force law maximum position, another having just lost its restraint, and

with other atoms having displacements associated with the decreasing part
of the force law.

At

All the models reviewed in this section to date, are idealized to the extent
that they are of the Peierls-Nabarro type or are one-dimensional simulation
models; such models allow for the atomic structure's discreteness only
within the atomic planes that bound a cleavage crack. The simplicity of

the models, particularly those of the one-dimensional type, has enabled the
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interplay between a variety of factors to be rgadily appreC£§ted w{tT,a .
minimum of mathematical analysis. The con%1p51ons.rea§hed from ETL J}TPV;:“
models are supported by a limited number of lnvestlgatlons of mO{L rzatio ic
models. As regards the effect of the shape of th nonillnear p?l% o: ;T
force law, Esterling {14] has examined the 5tab111ty.of a twq-glw(nsxo?c‘v_
Mode 1 crack in a simple cubic lattice within a lattice statics %pgfoxiﬁf%lon,
investigating the effect of various idealized neargst nelghbo??~£01u?‘fdws
for the case where Poisson's ratio is zero; Esterllng‘f analysis Ehﬁ%% o;e
extends a similar analysis due to Hsieh and Thomson [13],_who Spebli%&?l y
considered the force law appropriate to linear bon§-snapp1ng. Iq;p?pt}on
of Esterling's results clearly shows that the lattice trapping efF?LF is
more marked the steeper is the descent of the forcg law from the maX{muﬁ

to the zero restraint position, and this accords with thgvpredlcrlqns o_q
the simple one-dimensional simulation model. Mqreovgr, if the m§x1mum 18
maintained at a constant value, the greatest effect is on the {onef o
limiting crack tip stress intensifica;ion, a result which clearly agrees
with the predictions of equations (14) and (15).

Sinclair has examined the behaviour of a two-dimensional Mode I é%}l)
cleavage crack in silicon with a straigh; edge_paral}el to the [l vy
direction, using an atomistic computer 51m91at10n model.. Sev?r% 30@— e
central interatomic force laws were investigated, a}l bglng matche tortxt
elastic constants and the cohesive energy, but varying in fhape a%f;?n%—
range; a short-ranged force law gives a more pronounced tfdpang ¥£;;c
than a long-ranged law. This result agrees with thqurodicﬁlini( ¢
Smith's simple one-dimensional modelf.ﬁor if the gewera} force ?Y {?me
Figure 10 is considered for two specific laws characteflzed by the %f./ .
areas under the curves, tq has the same value g.iy £) for the‘tw? 1&“5,1L.
the area under the increasing linear portions is neglected. Consequently
relation (13) becomes

tz 7 .
Py _ (J‘ i T) & - b (17)

p 2 . )
U <1+._5->(¢1+,\-1)+/:

whereupon P,/P, decreases with t; thus a short-ranged force law (Sma}l‘ﬁ)
shows a greater lattice trapping effect than a long-ranged law, which is
precisely Sinclair's result.

£1I., DISCUSSION

As indicated in the Introduction, a part%cular aim of inves?1g?tlu?%’?;n—
cerned with the lattice trapping effect is to relate the crlttxé{‘c}%gl
extension stress, with discreteness takgn 1n?0’9cc0unt, to th%‘:l?fl%;Ah
extension stress predicted by the classic Griffith theéry, ?§1?? if~b 1
tinuum based and incorporates the surface energy y of th pélFL%gddl -
material under consideration. If this latter procedure %s &ppll;a FO [igd
simple one-dimensional model, the simulgted crack extends when the applie
force P attains the critical value P. given by

P = ‘/ Ak { R(u)du (18)
e a

where R(u) is the force law, and the integration limits are ?er? and that
value of u for which the restraining force becomes zero. TFor the
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force law in Figure 9, it immediately follows that:

R A

when comparison with expressions (11) and (12) shows that P, < Pe < p,
irrespective of the value of t/q; in other words, the Griffith force lies
between the force limits within which equilibrium configurations are
Possible with the discrete atom model. The same conclusion is also valid
for the force law in Figure 10, for then

P e
C

(Iay ~ y/ !

(2‘ )
and the conclusion follows by comparison with expressions (14) and (15).
Against this background it is worth looking very carefully at the results
obtained by Esterling [14]. He showed that the Griffith stress was bounded
by the upper and lower critical stresses for only a few of the wide variety
of force laws studied; for most laws, the Griffith stress was less than
the lower critical stress. The laws for which the Griffith stress is
bounded are those where the descent from the force law maximum to the zero
restraint position is particularly steep; laws characterized by a tail
prior to zZero restraint are associated with a Griffith stress which is less
than the lower critical value. This suggests that if a force law with a
similar tail is used with the simple one-dimensional model, a similar
effect ought to be observed, This is indeed the case, since it is easily
dcmonstratqgnﬁggt with the artificial force law shown in Figure 11, with
t/q <2 [/ + X + 11/X (i.e. relation (10)), Py and P, have the same magni-
tudes as for the dotted force law (i.e. the same law as that shown in
Figure 10), and these are given by relations (14) and (15); furthermore,
for a range of A values there is a4 corresponding range of t/q values for
which PC is less than Py.  Thus when the force law has a pronounced tail
prior to the zero restraint position, it is possible for Pc to be less
than Py, a result that accords with Esterling’'s behaviour pattern.

1 +:§) (20)

The results from the various investigations reviewed in the preceding

section, strongly suggest that for a two-dimensional cleavage crack subject

to Mode I loading conditions, the magnitude of the lattice trapping effect,

as reflected in the ratio of the upper and lower crack tip stress intensi-

fication limits between which stable cleavage cracks can be sustained

within a brittle solid, is greater:

(a) the larger is the ratio stretchable bond elastic stiffness: bendable
bond elastic stiffness

(b)  the narrower is the force law describing the tensile rupturing of
atomic bonds across a cleavage plane

(¢) the steeper is the descent of the force law from the maximum to the
Zero restraint position.

In viewing conclusions (a), (b) and (c¢), it is therefore quite clear that
maximum lattice trapping of a straight crack front should be observed with
a narrow force law, a steep descent from the maximum to the zero restraint
position, and the larger the ratio stretchable bond elastic stiffness:
bendable bond elastic stiffness, with the latter parameter likely to bhe
having the dominant effect. However, if a particularly low bendable bond
clastic stiffness is the cause of this ratio being large, it will at the
same time promote dislocation activity. Whether or not dislocation gener-
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ation and mobility does actually occur in the vicinity of a crack t%p, is
an aspect of the cleavage problem that is beyond the‘scgpe of the.Smele
models described in the preceding section; hgwever, 1t_ls a most 1mportgnt
problem and has received detailed consideration (e:g. {}7], [18]), for it
is central to the classification [19, 20] ofAmgterlals into ductile and
brittle categories. As an example of a sPec1f1c study,‘Gehlen, Hahg apd
Kanninen [21] have studied the configgratlon near t@e tip of a s§ra1$h§
{100} cleavage crack in alpha iron using an atomistic computer §1mulat%on
approach, and showed that the extension stress was apprec1ably in excess
of the Griffith value, with dislocation nucleation being observed.

Because dislocation activity is easy in materia}s with_a low elast?c shear
resistance (i.e. in the extreme case, those thLng an ideal metallic bond),
it means that where brittle crystalline materials are conce?ned, vg?yA
special circumstances indeed are likely to bg requlged to give sufglc1ently
strong lattice trapping of a straight crackirront, for 1? to Pe retle;ted
in the experimentally measured crack extension stress belng markedly in
excess of that predicted by the Griffith relation. Accordingly, use of
the Griffith approach, based on a continuum—tyPe model and a value of vy
relevant to the force law describing the behaylour of the atoms along the
cleavage plane, should suffice for most practical purposes.

However, as emphasized in several pap§rs-[15, 16, ?2, 23], the mgin con-
sequence of lattice trapping is that it is responsible for whaF is knoyn
as the 'creep mobility of cracks'. Thus, analogous to the behaviour o? .
dislocations, it should be possible for a crack_to propagate slow{y,iw%t
the aid of thermal fluctuations, by the gucleatxon and mqvement of k1n§s‘
along a crack front, rather than by the forward propagation of the entlr%
crack front. Experimental evidence for theymally activated cleavage cr?uk
growth is provided by the observations ?f Wlederho?n, Hockey an@ Rober;s
{24] on {1010} cleavage cracks in sapphire ?ested in vacuum. Exggre 1 .
shows the critical stress intensity factor for rapid cleavagg trag?ure as
a function of temperature, while Figure 13 §h0ws the stress thenslty
factor - crack velocity variation at specific temperatures. Such obse?—
vations clearly suggest that, for sapphire, cleavage §racks can pfopagdte
in vacuum by a thermally activated procesg,‘and this is powerful su?po?t
for the existence of lattice trapping. Similar experimental results bdve
been obtained [25] for some glasses, where tQ? @egree of local ?rd?r‘ln
the crack tip vicinity 1is presuned to be.suft1c1ent for the processes
discussed in this paper to become operative.

The behaviour of a kinked crack front in alpha iron h%s been ;nvestigach
via an atomistic simulation approach'by Kannlpen and gehlen 12;!, and in
silicon by Sinclair [16], and alsq via a lattl?e staELgs approauh b{
Esterling [14] in a general material for a variety of 1deallz§? ne%}est .
neighbour force laws. As with a sFra}ght ;rack front, Fherg 15'3 range o
crack tip stress intensification Wlthln which a crack kink is %dtt;;Sr
trapped, but this range is appreciably narrower than the correspon ingl’t
range for a straight crack front. More 1mp9rtantly, Este?llng to?n ‘tha
the widths of the ranges in which a crack kink and a §tra1ght grégk_f?ont
are lattice trapped increase and decrease togetherf Wlth the kink }lmlt
stresses always lying between the straight crack.llmlt stresses. l.hus;l
although this paper has concentrated on the lattice trapping of a btralglt
crack front in terms of the force law and the nature of the atomic bon@1ng,
the conclusions should nevertheless be equally applicable to thevFrapplng
of an irregular crack front, and therefore very relgvant to thermilllya
activated cleavage crack extension. Interegt in this phenomenon 1is r%— ]
flected in the recent series [15, 16, 22] ot‘ayalyse§ concerned with crack
kink kinetics; such analyses have followed similar lines to those used
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more than a decade earlier for dislocation kinks. A major reason for this
interest is that an understanding of thermally activated cleavage crack
growth provides a basis [22] for explaining the effects of aggressive
environments on cleavage crack extension in brittle materials, a problem
that is of considerable technological importance. It is the author's
opinion that this research area will receive extensive study, both theo-
retical and experimental, in the next few years.
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Table 1 - The Limits of t/q for which expression (13)
is valid, for various values of A = 2Ma/Lb

A t/q
0 o
0.50 8.89
1 4,83
2 213
3 2.00
8 1.00

>y, Crack size c
| Ve

Ci

The relation between the critical applied stress o roquire@ to
extend a crack as a function of its length, as predicted via

the Griffith continuum-type model; the relation follows a c=l/vc
form. For a given applied stress o,, a crack of length ¢ > €
extends, while a crack of length ¢ < ¢, contracts.

Plenary
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stress ¢

Crack size c¢
il

Figure 2 - The schematic relation that exists between the applied stress
and stable crack size, when atomic discreteness is taken into
account; it is important to note that the distances between the
peaks and troughs are of atonic dimensions, which are of course
very small in comparison with the macroscopic crack size.
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3 - Discrete atoms in the vicinity of a crack tip in Smith's Mode
III Peierls-Nabarro type model. The atoms in the upper plane
are displaced with respect to those in the lower plane as the
crack tip moves from left to right.
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figure 4 - Force law represented by relation (1) with Pmax = (3u/4m) (1/3)
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Figure 5 - Tdealized models: (a) a narrow edge dislocation, (b) a wide

edge dislocation
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Figure 6 - Thomson, Hsieh and Rana's one-dimensional model [9] of the
cleavage process
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Figure 7 - Smith's e-di sione ]
g 7 Smith's one-dimensional model [11] of the cleavage process
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Figure 8 - Upper and lower bounds P, and Py for the crack extension
force in Smith's one-dimensional discrete atom model, compared
with the value P. for a continuum model; the results are for a
linear cut-off force law.
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Figure 9 - The force law leading to expressions (11) - (13); u is the

displacement of an atom, and R(u) is the restraining force
due to its interaction with an adjacent atom in the neighbour-
ing chain
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Figure 10 - The force law leading to expressions (14) - (16); u is the

dxsp]acgmenF of an atom, and R(u) is the restraining force
Que to 1Ts interaction with an adjacent atom in the neighbour-
ing chain
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Figure 11 - fhe force law (full lines) used to show that it is possible
for P, to be less than Py with the simple one-dimensional

model
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