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FRACTURE
B. A. Bilby FRS*

{NTRODUCTION

.r¢ are three important processes whereby a condensed phase can be sep-

Cracking, in which rows of atoms or molecules are
in which finite

tiiited into two parts.

slied apart normal to their centres of mass; sliding off
+ows of them slide over one another until they ultimately part company;
sl the vemoval of individual atoms, as in vacancy migration or electro-
sical attack. These processes, and, in crystals, those of deformation
inning and martensitic transformation also, interact on a microscale

ing the manufacture, assembly and use of materials to produce each
Inhomogeneities of material and structure may lead to cracking and

st}
oids; cracking is relaxed or blunted by local sliding while sliding and
So our engineering structures

twinning themselves can cause cracking.
cnerally contain many small cracks and voids, as well as inhomogeneities
In

. material and structure which readily generate them under loads.

ture we are mostly interested in the conditions under which these small
mtinuities can grow and propagate as macroscopic cracks. For this
sropagation to proceed, two conditions must be satisfied. 1t is necessary
‘4t the decrease of total energy (the elastic energy of the body plus the
stential energy of the loading system) be at least equal to the energy
wired to drive this separation process; and it is necessary that some
‘sical mechanism can take place permitting this separation to occur.
i v be convenient to consider the separation process on many different
aies. We may look at a catastrophic failure occurring in a massive
tructure; at a specimen undergoing a fracture toughness test; at a small
c¢ion near the tip of a larger crack where there is subcritical stable
seowth or slow extension during fatigue or creep; or at slip occurring on
. microscale during the formation of craze nuclei. Whatever the scale
ver, these two principles govern the extension process.

Sy

e engineer must design and build structures and keep them safely in
So there arises a continual need for practical tests to character
As understanding of these properties

L VL
iv¢ the properties of materials.
ecases, these tests become more discerning and reliable, but their
; lopment must go hand in hand with more fundamental studies. The
sistory of fracture and fracture mechanics is yet another example of how
sheory and practice interact to their mutual advantage. At the present
time, when science is a little unfashionable, it is well to remember that
¢ cunnot go against Nature and that our progress will be faster if we

iearn a little to understand her ways.

e
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FRACTURE CRITERIA

In a linear elastic material the singular field Pij near the tip of a sharp
crack is characterized by the stress intensity factors K;, K,, K; and has
the form

- =12 ;
p.lj = (27r) stsij (1)
where the fgi; depend on 6. If the advance of the crack is governed by

the stress field in this region, then we can determine by a test, for
example in mode 1, the critical value Kic at which the crack will advance
catastrophically. Then, if the service environment and other conditions
are similar to those of the test, a cracked structure is secured against
catastrophic failure until the K, for some crack in it reaches K;.. This

is the basis of linear elastic fracture mechanics. In the test, the
departures from linear elasticity at the crack tip are carefully controlled.
Corrections which make the slightly relaxed crack appear a little longer
can be applied to extend the approach to small scale yielding. However,
difficulties begin to multiply when we recognise that fractures in practice
are generally accompanied by considerable departures from linearity, and
when we try to make small scale tests on tough materials. The problems

are compounded by the facts that fractures in structures oceur under com-
bined stresses and by the necessity of making proper allowance for chemical
reactions, temperature, and varying stress.

For a sharp crack in an ideally brittle elastic miaterial the critical K
criterion embraces both of the fundamental conditions for fracture. The
physical process condition is automatically satisfied, in a continuum
model by the ‘'infinite' stress, or in one which is more realistic [1] by
the existence of some bond at the crack tip which is always on the point
of breaking. Although the situation at the tip of a macroscopic crack is
much more complicated than this we have to remember that separation pro-
cesses of this kind are occurring on a microscale in this region. It is
thus important to model them, and particularly to study how the rate at
which they occur is affected by temperature and the chemical environment.
This is because whether such micro-cracking occurs or not may greatly
influence the nature of the whole macroscopic fracture itself.

The energy condition we now formulate in terms of the energy release rate
or crack extension forece G, introduced in 1948 by Irwin [2] and shown by
him in 1957 {3, 4] to be determined by K. Griffith's energy condition
[5, ©] may then be written ¢ = 2y, where v is an effective surface energy
for fracture; alternatively we have (in mode I) G = Gyc = K;&/2M, where
Gic is a critical value of G and M is an elastic modulus [7}. From this
point of view K,. is an indirect way of describing the effective surface
energy for fracture. In 1960, G was expressed as a path-independent
integral [8], and in 1968 a number of authors [1, 9 - 11] independently
gave related expressions for G, one of which is now widely known as the

J integral. The generalisation to the dynamic case was also considered
at this time [12], and it was shown [1, 12] that the theory of the crack
extension force followed naturally from the general theory of forces on
elastic singularities developed in 1951 using the energy-momentum tensor
{137,

Many computations and experiments have been devoted recently to the exam-
ination of J and quantities related to it as candidates for fracture
criteria in post yield fracture mechanics. This work is not always ecasy
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to tollow because of variations in the terminology and interpretation of
different authors. Moreover, the confusion is worse confounded by the

use of similar symbols for the integrals themselves (which are mathematical
entitites in their own right, and which can be calculated as numbers with-
wut any interpretation if desired), and other quantities. These latter
guantities are derived from the experimentally determined load-deflection
curves of specimens containing cracks of various lengths, or sometimes,

h the help of approximate theories, by other experimental methods.

¥, and the integrals themselves, are also calculated theoretically
sitirely from model experiments, by numerical methods using large computers.
{1 the specimens were non-linear elastic these quantities (as well as the
als themselves) would be crack extension forces, but in the usual

; tical and model situations they are not (and neither are the integrals).
it might be helpful [14] to use some symbols other than J for these pseudo-
vruck-extension forces, retaining J for the integral defined by Rice [9].

%e shall now try to discuss some of the problems arising in this work.

integr

PUNDAMENTAL INTEGRALS

wr the linear or non-linear elastic body the quantity
Fy = { PM de (2)

such that -Fpd&y is the free energy change when all singulgrities inside
¢+ vlosed surface S drawn in the body are displaced by 8Zg [13] (we limit
s discussion here to the static case; for the dynamic see [12, 15, 16]).

re

TR Ggs = Pz Us
Iij " 23 }11 i,%

~
{31
~—

the energy-momentwn tensor of the elastic field for which the stresses
©ij oare given by 9W/3duj j and +W(uj, ui,j, Xi) is the strain energy
dobsity, assumed, for generality, to depend not only on the field quanti-
ties, but also explicitly on Xj, the initial coordinates. (We use a
sotation which makes (2) valid for the finite deformation of a non-linear
clastic material; pij is the (unsymmetrical) nominal or Boussinesq or
ccond Piola-Kirchhoff stress-tensor, the commas denote differentiation
with respect to the Xy and S is a surface in the undeformed body. -W is,
in the static case, the Lagrangian density function from which the field
squations are derived from a variational principle [17 - 21]. The treat-
it can readily be extended if need be to a material of grade n [19, 20].
ing the field equations, we can show that

S
Pui (% (4)
AXJ axx exp

where "exp' denotes the explicit derivative, with ui,ui, j and X ,j#b,

fiwld constant. Putting & = 1, regarding the crack either as a distribution

uf dislocations [1] or as & singularity in its own right [15], and letting

dsg o= njds tor j = 1,2, we get for the crack extension force,
o= S.. - p.. . .ds 5)
Fq £ (W 31) le ul’l) nJ s (5)

A

9%
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The divergence of the integrand vanishes if (3W/3X1) oy = 0; that is, if
the material is homogeneous in the direction X, of the crack extension.
However, it may be inhomogeneous in the X, direction; for example, the
crack might lie between two different media. The integral J [9] is of the
same form as (5), but W may be replaced by W', the density of stress
working

WXt = S ey (Xt ){'aui’j (X, ,t')/3t '} e 6)

S ‘ot

where t is a parameter denoting the progress of the deformation. The
derivation of F; and the proof of its path-dependence involves the assump-
tion of the existence of the function W. J and F; are thus identical and
independent of I' in linear and non-linear elasticity. Deformation
plasticity, provided there is no unloading, can be regarded as a kind of
non-linear elasticity. Thus, if the same strains and displacements are
used in both J and F,, they are again identical and path-independent. In
a region of plasticity modelled by the incremental theory, J may be eval-
uated with du interpreted as the total shape displacement giving the
shape change of the solid; that is, duy = dui + du{, where E and P denote
the elastic and plastic contributions. No general proof that it is then
path-independent has been given, although, as discussed at 1CF3 [22], it
may be approximately so [23]. It is clear that the arguments leading to
the path-independence of F; depend on the existence of the function W.
Now, if in the actual loading the density of stress working is independent
of the stress-strain path, W' is a function only of the current state and
not of the strain history. Thus W' can be used for W in Fi; then if u

is the total shape displacement, J§ and F; are the same and are independent
of T', for we cannot tell that the field quantities were not derived from a
density function [24]. A steadily moving plastic-elastic crack is an
example of this kind [25]. The matter has been discussed recently in terms
of the DBCS model [26, 27). It is emphasized that, in general, J is path-
independent in any situation where W' is independent of the stress-strain
path by which the current state is reached [27]. It will be evident that
by using various combinations of the elastic, plastic (or total) strains
and displacements appearing in the two terms of the integrands a con-
siderable number of integrals resembling J and Fi can be obtained. It
would be helpful, when these are evaluated numerically, if the quantities
being evaluated were very clearly defined. Studies of the path-dependence
of J in incremental plasticity are continuing [14, 28, 29].

1f plastic flow has occurred at the crack tip, the integral Fy gives the
resultant force on the crack tip and on all the dislocations inside S

[13, 26], but it is defined only for paths in the elastic region. However,
an integral Qg may be devived [22, 30] which reduces to Fy in the elastic
region and which can be taken through a continuous distribution of dislo-
cations representing the crack tip plasticity (and any micro-cracking
there). This integral Qg was given at ICF3 and is [22]

- s EY g .
Q, = é Woo5 = Pyj [)Sli) 45, (7

where W is the elastic energy density and Bgi the elastiﬁ distortion tensor
giving the spatial increments of elastic displacement dui = dxgBy; in a
continuous distribution of dislocations (the elastic displacemén% uy does
not exist [31, 32, 33]). Qg reduces to zero when shrunk on to the crack
tip [22] for the small scale yielding from an edge slit in anti-plane
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ctyain [34]. As discussed at ICF3 [22], it would not be surprising if a
listic model of crack tip plasticity showed that the crack and its
astic zone were in neutral equilibrium, in the sense that any energ
cased by crack advance is absorbed by plastic work. This may be shown
he so for the quasi-static DBCS model {1, 35, 36], for the dynamic
model [15, 37], and, more generally, [38], for elastic-plastic mat-
215 having a flow stress tending to a constant value at large strains;
e also [39] for further discussion. These questions raise problems
wit the use of quantities like Fy and J for the characterization of
cack extension [22]. The interpretation of F; shows that F 88 is the
snergy released when the crack tip and all dislocations representing the
plasticity are displaced in the X, direction for 8&. This is not (neces-
irily) an equilibrium displacement of the crack and its plasticity, but
she significance of this energy release, and how much of it is mopped up
sy plastic work in an actual movement of the crack, are not clear. Atten-
i has again been focussed on the matter by recent numerical work [40,
{ confirming the result {25, 38] that there is no energy release rate for
srowing crack in plastic-elastic material. If -AW is the work of un-
ting the initially stressed segments of crack face it is suggested that
rack tip energy release rate GA = AW/Aa calculated over a finite crack
rowth step Aa should be considered [42, 43] (the quantity GA ~ 0 as
w0} .

regarding heat fluxes, we can write for an imposed small extemsion Aa
“ the crack tip,

-AE = AE. + Aw + Gha + 0(da”)

POT EL
Hy ~AEpgy is the work done by the loading system, AEgy, the increase in
toved elastic energy, Aw the work dissipated in plastic flow and Gha
ihe energy released at the crack tip. In linear and non-linear elasticity,
w1 Aw = 0, it is the essential property of the integrals F; and J that
v give G directly. For the fracture condition we then put GAa = 2v'Aa,
here 2y' is the effective surface energy for fracture. The result that
i = 0 when plastic flow is allowed really shows that the plastic elastic
ontinuum models considered are too simple. We have to make a more
cealistic representation of the fracture process allowing for rate effects,
siero-cracking and mechanical instabilities in the fracture zone. At the
cimplest level, we simply lump some of the plastic work into the fracture
ergy, recognising it as part of the failure process; this is the exten-
ion of the Griffith theory originally proposed by Irwin [2] and Orowan
{44}, In a semi quantitative way, d4s we discuss below, the DBCS model can
o used to develop this idea. As has been noted [22], its developments
to include rate effects [11, 45 - 47] show some of the qualitative
features required to describe slow stable growth and the transition to
fast fracture.

35

¢reom any numerical solution for the plastic-elastic crack, we can calculate
ot only the integrals Fy and J and the increment AEpgr + AEgp * Aw
(tending to zero, perhaps, as Aa - 0), but also by suitable integration
sver the developing field, the quantities +Epgr, Egy, and w as we load up

4 crack of fixed length a. We can then find the derivative

a{Epgr * EBepL * w)/da and compare it with Fi and J. There is evidence

{14] that these quantities are not the same. This we should indeed expect,
{or, as in the corresponding experimental procedure when we load up speci-
wens with cracks of increasing length [48 - 50}, we are not dealing with
perfect differentials. The states obtained after loading a specimen of
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crack length a and allowing it to extend to a + Aa or alternatively load-
ing a specimen of crack length a + Aa are different [21, 51]. 1It is not
established even that AA, the area between the load extension curves for
the cracks of lengths a and a + Aa, is -JAa, nor is the connection with
crack extension at all straightforward [24]. It is thus a matter for
experimental study whether these or related methods [52 - 54] will yield a
satisfactory characterisation of the onset of fracture.

THE CRITICAL DISPLACEMENT CRITERION

An interesting development using a critical displacement criterion for
fracture began with the appearance of the BCS fracture theory [55, 56],
which uses a highly simplified model of the crack tip plasticity consisting
of a linear array of dislocations. A similar model to remove the elastic
crack tip singularity and represent the plasticity was used by Dugdale
[57]; a closely related (though not quite equivalent) procedure for elim-
inating the crack tip singularity is central to Baremblatt's work [58].

The procedure has also been used by Vitvitskii and Leonov (see [59]); a
similar idea was employed by Prandtl [60]. The DBCS model has been
claborated in various ways and very widely applied to discuss many aspects
of fracture [61 - 89]; recent reviews have discussed some of these develop-
ments [1, 22, 51]. An aspect which is currently receiving increasing
attention is the BS (Bilby-Swinden [70]) model in which two (or more)
dislocation arrays inclined to the crack are used in an attempt to make a
slightly more realistic representation of the plasticity [42, 88 - 91].

The DBCS model has also been used in discussions of the COD concept in
post-yield fracture mechanics [92 - 95]. There has been a considerable
development of this criterion on the engineering side, but, like its
rivals, its status as a single characterizing parameter is still a matter
for further elucidation and debate.

Nevertheless the use of the criterion in the BCS theory has been very
useful in providing a two-parameter model fo the energy expended in the
fracture process, and an interpolation between the Griffith theory (or
linear elastic fracture mechanics) and failure after considerable yielding
or plastic collapse. If ¢, is the critical displacement at the crack tip
and o, the stress in the relaxed zone, the fracture stress Og is related
to the crack length ¢ by the equation [65, 66].

oe/or = (2/M) cos™{exp(-c*/nc) } (8)

where c* = M ¢./40:, M being an elastic modulus. The condition ¢ = c¢*
defines the crack length at which the material becomes notch-sensitive
[65]. The equation (8) reduces to the Griffith condition when ¢ >> c¢*;
we then have a "low-stress' failure with of << ¢;. When ¢ < c¢*, the
fracture stress approaches o, the strength of the layer ahead of the
crack. This equation is successful in describing the stresses at which
failures occur below general yield in large structures and may be used
to estimate dangerous notch sizes in them [64 - 66, 70, 83 - 85]. Also,
with 03 identified with the ultimate tensile strength or the collapse
stress, and with an appropriate stress intensity factor for the geometry
considered it is remarkably effective in correlating post yield fractures
with defect size in a wide class of materials [68, 6Y, 96] and can be
used to estimate K,. values from "invalid" ASTM tests. It has also been
suggested as an interpolation between failure by plastic collapse and

0

-
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{incar elastic fracture mechanics, of potential use in assessing critical
defect sizes in large structures and in design [97]. The engineer cannot
i ford to make mistakes and, if he must, he will test his actual structures
v+ destruction. His inclination is frequently for the simplest approach,
tased on large-scale tests [98]. Although the great simplifications in

the BCS theory are obvious, it is not wholly empirical, and so may be of
come value in the correlations which he has nevertheless to make.

fhe theory gives for the fracture energy 2Y' the expression T;¢.. We

i

distinguish two modes of fracture [22, 61]; a stable, non-cunulative or
HOM calised mode which occurs when 0, ~ Og; the material is not notch-
wensitive.  The non-linearity represented by the dislocations spreads
through the specimen much faster than the crack. The second mode is
nilative or localised and is unstable; in this type of failure the
terial is notch-sensitive for ¢ >» ¢*. A similar localised set of dis-
itions representing the non-linearity moves with the crack as it grows,
o that it can advance without the non-linearity spreading through the
whole net section ahead of it; the fracture is a low-stress one with
“< g; and ¢ >> v, the extent of the non-linearity (r v mc* Vv Ed./01).
can see with this classification the mechanical similarity of fractures
with very different values of 2y' = 0;$.. Thus ideal brittle fracture,
discontinuous ductile-cleavage, mode I plane stress necking and mode II1
ductile tearing, and the 45° shear mode in steel plates are all cumulative.
ixcept for the first all involve a mechanical instability because the
capacity to harden has been exhausted, non-linear flow has concentrated,
indd large strains have occurred. These large strains are possible when-
cvey free surfaces allow large geometry changes, on a microscale at blunt-
crack tips or in the internal necks between cracks and voids, and on
s wmacroscale when the specimen is (relatively) small in one dimension.

GTHER CRITERIA

v number of other proposals for the characterisation of post-yield frac-
tures have been made, some of which are reviewed at this meeting {52 - 54,
4% - 103]. Their use and applicability are still a matter of active
curvent research. However, the concept of the R curve [100, 104 - 106]
rhaps deserves special mention. It touches upon the fundamental con-
titions for fracture referred to at the beginning of this paper, and also
Jdiscussed in one of the plenary sessions here [107]. The crack will not
sun until the total free energy of the whole system begins to decrease as
it advances. The R-curve gives explicit recognition to the idea that the
physical processes for the advance of the crack (cracking and sliding off
in combination on a microscale) can occur, but recognises that these
srocesses are, temporarily, self equilibriating. Just as a material wortk
sirdens, so the resistance R to crack propagation rises, Many workers

tave considered this phenomenon [10]. Here we wish only to draw attention
io the fact that it again forces us to think in detail about the processes
of sliding, blunting and microcracking which are going on at the crack tip
in all the materials we consider [107 - 115}. It may well be that we shall
st achieve a complete understanding of these processes without considering
theilr sensitivity to the strain-rate and the environment.

UTHER PATH-INDEPENDENT INTEGRALS

fhere are other path-independent integrals of use in the theory of fracture
sesides the J and the F, we have already discussed. Before doing so we
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make a few comments on the rather profligate introduction of 'new"
integrals currently in fashion. This is not the place for the detailed
critique of individual proposals, but we believe that those planning to
launch a vessel of this kind should first study carefully the background
theory and bear the following points in mind.

Firstly, a complicated integral expression may be path-independent because,
in any example of interest, it is identically zero. Secondly, we have to
distinguish two types of path-independence. If the two-dimensional
divergence of the integrand vanishes, the integral will have the same
value for two paths each beginning at a point A on the lower crack surface
and ending at a point B on the upper crack surface. However the value
may be different for a path beginning at another point A, on the lower
surface and ending at another point B: on the upper. Indeed it will be
unless the sum of the contributions from the paths AjA and BB, is zero.

If this sum is zero for all A; and B, then the integral has the same
value for all paths beginning at any point on the lower surface and ending
at any point on the upper; we can slide the points A and B along the crack
faces in any manner without changing its value. It is this kind of path-
independence which is of real value, since we can deduce values for paths
close to the tip from those placed far away at our convenience, where the
field quantities are easier to find. Of course, we can always make an
expression ''path-independent' by subtracting from it the contributions
from the paths BB; and A;A. But then, if we wish to use the expression,
we still have to evaluate these contributions, and this requires a know-
ledge of the field close to the crack tip; we have made no real progress.

The general theory of path-independent integrals stems from the work of
Noether {116]. They arise for any field when the Lagrangian density
function from which the field equations are derived is invariant under

the operations of a continuous group. The general consequences for
elastic singularities and cracks have been discussed in a number of papers
by Eshelby [13, 15, 19, 20}]. Gunther [117] was the first to apply
Noether’s theorem systematically to elastostatics. In addition to Fy he
found the integrals

v ) o
Lig £ (xkxlj szkj PPy ugpkj) de (9)

and M= [ (x,p Lup ) ds (10)
TRy T 7 NPy i

also given by Budiansky and Rice [118}. Fy, Lyg and M are path indepen-
dent because a picture of a general elastic field remains one after it
has been respectively translated, rotated and enlarged. Consequently
[19, 20] Fg is valid for finite deformation and a non-linear material,
provided only that it is homogencous, while for Lyg the material must in
addition be isotropic. For M we must have linearity in the displacement
gradients, but we may have anisotropy. There are some special cases in
which these requirements may be relaxed [9]. Arguments have been given
[119] that Fgp, Lxy and M are the only path-independent integrals of
Noether's type and that in plane situations the only new feature is that
(10) reduces to

M= [ X,P,. ds, (11)
g VAT
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transformation which results from Gauss's theorem [19]. However, in
two dimensions, several infinite classes of path-independent integrals
have been found [19].

interesting to calculate the force F, given by (2). We may think
wsely of Fo oas the force normal to the crack tip, but its interpretation
coguires some care. I[f we evaluate Fp; using the singular stresses (1),
thiat is, for a small circuit about the crack tip, we find that F, = -2K;K»
ii:241, 121]. This is an example where the integral (2) has a different
salue for a large circuit round the crack tip; that is, the integral is
#ot path-independent in the really useful sense because there are, outside
the singular field, non-vanishing contributions along the crack faces.

#¢ cannot make a useful path-independent integral simply by subtracting

H crack face terms [121], because we still have to know the field along
the crack if we wish to use such an integral. It is indeed [24] easy to
sow that Fp is the limit of (w/2)pii1uz as the tip is approached along
s:iher the top or bottom surface of the crack.

€

toosely, we expect Fp to push the crack sideways, and this raises the
interesting question of what determines the path of a crack. This problem
tiso arises in considering fracture under combined stresses and in crack
terking., It is a subtle one because the crack constantly alters the
field as it proceeds. A possible criterion is that the crack moves so as
to keep Fo = 0 [24]. This has been used by Kalthoff [122] in the form
= (} to discuss the angle at which a crack forks. See also [123] for
it equivalent proposal. There has been considerable interest for some
t : both in the "angled-crack" problem and in the more general problem of
cvack initiation under combined stress and a number of theories have been
proposed [124 - 129]; for a selection of earlier references, see [51].
“ idiscussion of these problems based on an analysis [130] of a crack under
neral loading with a small kink at its tip making an angle o with the
wain crack was given at a recent meeting [51]; several authors have
il ished analyses of this kind [130 - 135]. However, to discuss the
£ of deviation, or for Znitiation of the kink under combined stress,
the omost suitable results are those for the limit when the kink is vanish-
inyly small compared with the main crack. Several criteria for the path
i the initiation have been examined using results of this kind [51, 130,

Fab ],

“ie integral Lyg enables an alternative interpretation of the force F; to
o piven when the crack with a kinked tip is considered. If f; and f;
ire the crack extension forces determined by evaluating (2) round the tip

«+f the kink, then it may be shown [20] that

dfl]
£p = |k 0
[du a=0

fhat is, if the tip of the main crack deviates through a small angle dao,
the change in the crack extension force f, is f,da. Several authors have
tls0 recently examined the problem of the forked crack [134 - 135]; the
rosults show some discrepancies [135]. Again, for the initiation of
wirking, the case when the forks are vanishingly small is of most interest
{135]. Using a ko = 0 criterion, the predicted branching angle does not
Jdiffer very much from that observed and calculated by Kalthoff [122].

#eference [19] contains the expression for Pyj for a material of grade 2;
there seems to be some uncertainty in its application to crack problems
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[20, 136]. Other examples of the application of path-independent integrals
to problems of fracture are also given. They include a discussion of
Obreimoff's experiments on mica; of the "trouser test' for rubber using

(2) with finite deformation; and of the two-dimensional analogue of the
""conical crack', and of the edge crack wedged open by concentrated forces,
using (11). The static version of equation (59) of [15] furnishes an
integral which is path-independent in the presence of certain types of
body forces.

Before leaving the topic of pdth independent integrals we wish to repeat
the brief comment we have made [137] about the use of the quantities J or
C* in creep crack growth; for a selection of references see [138]. If
the material is linear, viscous and incompressible and the flow is slow,
then we can make the usual analogy with linear elasticity by replacing
the displacement by the velocity, the shear modulus by the viscosity and
by setting Poisson's ratio equal to one half. Then an integral of the
form of F, is path-independent. However, what it represents is the
following [20]. A body instantaneously contains a crack of length a under
some load and a state of viscous flow is established. All the work done
by the external forces is being dissipated by the viscosity and there is
a certain dissipation rate. Now the crack is lengthened by Aa; then the
elastic-viscous analogy shows that 2F;Aa is the Znerease in the rate of
dissipation when the boundary loading is held fixed, but the decrease in
it if the boundary velocities are kept constant [24]. In other contexts,
this kind of integral can perhaps be used [20] to select from a class of
slow viscous flows depending on parameters a flow which is actually ob-
served, by requiring that the dissipation be stationary (although the
principle involved is not easy to justify). It is not, however, clear
how relevant the integral is to creep crack growth. Of course, as is
often the case, it is not the value of an integral which is usually com-
pared with experiments, but some quantity which would be the G derived
from the compliance of a specimen if we were dealing with elasticity.
Moreover, the viscosity is non-linear. Nevertheless, if creep crack
growth can be satisfactorily characterised in this way, there will clearly
be a need for some re-interpretations.

In fact, one must expect a crack in a linear viscous material to elongate
in the direction of the stress [139]. A hole is a special case of an
inhomogeneity, and there has been some recent progress in the theory of
the deformation of ellipsoidal viscous inhomogeneities [140, 141}, a
process of interest in glass manufacture, geology and in the interpretation
of phenomena in inhomogeneous fluids. The growth of voids at crack tips
is, of course, one of the phenomena we must understand if we are to im-
prove our model of the processes going on there [142 - 146].

MOVING CRACKS
We refer only briefly to moving cracks; for more detailed accounts sce
{11, 12, 15, 16, 51, 147 - 151]. In a general dynamic elastic field there

is no path-independent integral for the force on a moving crack. The best
we can do [12] is to write the elastic field in the form

= 5% ry. o . o
uy = uy (X - Ve, Xo) o+ oug (X, X, ) (13)
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and try to arrange that near the tip uj' << ug. Here the crack tip is
soving with instantaneous velocity v Ln the X, direction. Then we can
write

G = 2im .
= 50 j' H, (.sj (14)

where S is a surface moving with the crack tip and

. _ o B B 15
ng (W + T) Oij pijui,i (15)

iere T is the kinetic energy density. It should be noted that Hgj is not
the dynamLL 4 x 4 energy-momentum tensor POJ. The integral of the dyngmic
’2i gives the force on the crack tip, plus the rate of change of "quasi-
momentum'' inside 5 [15].

e integral (14) is, in general, path-independent only when S =+ 0. it
dynamic elastic field is a special one which moves rigidly with the
ack tip, then G is independent of §, but special simple fields can be
ed to show that this independence cannot be true for arbitrary finite
S in a gemeral dynamic field [12]. It may be shown [12] that G vanishes
4t the Rayleigh velocity for the uniformly expanding crack in plane strain
{152, 153}, and at the shear velocity for a similar crack in anti-plane

serain [154].

e equation of motion may be found by allowing the crack tip to move
arbitrarily so that at time t its tip is at x = §(t), say, and then cal-
culating the field, as was first done by Kostrov [155] and Eshelby [156,
157]; Freund [158} has extended the work to plane strain. We can then
calculate G, which turns out to be a function of £ and £, but not of &;
the crack tip behaves as if it had no inertia [156]. If 2y (5,8) is the

fracture energy as a function of & and £, the equation of motion 1is

G(E,8) = 2Y(§,8) (16)

ke find that the velocity dependences of G and K are different, and that

¢, contains a factor which increases as the velocity falls. We can thus
cnderstand how the conservation of energy can be maintained during crack
hranching. For instance, a lower limit to the velocity of crack branching
might be set by requiring that the crack momentarily stops [15, 158].

With the continuing interest in the solution of dymamic crack problems
{159 - 165], we can look forward to further progress in our understanding
of discontinuous crack propagation, crack paths and crack branching.

UISCUSSTON

We have been able to refer to a few only of the many interesting papers

at this meeting. About specific materials and their behaviour in com-
pusites [107] we have said very little. We have not mentioned the effect
of the environment [166 - 167], the phenomenon of fatigue [168, 169], or
the growth of cracks in creep [170], all topics in the front line of
practical interest. Nor have we touched on the efforts now being made to
take a more three-dimensional look at the fracture problem, which stretches
asur analytical and computing powers and also raises some interesting

11
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topological questions {114}. Among the papers also, there are several
references to probability and statistics, applied both to flaws and to
microstructure [108, 171} and to failure probabilities [172, 173]. These
methods will be with us increasingly, and the analysis of reliability will
help to identify more quantitatively some of the critical factors to which
we should devote our current attention.

{n cavitation during high temperature creep [174] we have to consider
thermally assisted motion of individual atoms. This provides us with a
gentle introduction to the phenomena where mechanics alone will not do and
we have to consider the combined effect of stress, strain, temperature and
electro-chemical processes. Cracking, sliding and individual atom move-
ments all play their part in contributing to creep damage. Johnson's work
[170] reminds us that the damage may be general or local and that we may
relieve stresses both by sliding, and by void formation and microcracking,
a process oceurring also in brittle materials [115]. Let us remember too
that although the macroscopic creep rates of interest to the engineer are
very slow, these rates may be much faster in local regions where stress is
concentrated. Thus we must consider a range of mechanisms, and the defor-
mation and failure map {175] helps us to view things as a whole, and warns
of the pitfalls associated with the long extrapolations that have sometimes
to be made. These maps remind us too that as the strain rate rises, the
problem ot creep fracture passes into that of workability {176, 177]. The
emphasis on mechanism also recalls that although the macroscopic behaviour
may he viscous, in small regions of crystalline materials at least, we

have blocks of e ‘o material, in which atoms and dislocations are moving
and material is separating. Y

Particularly challenging are those fractures where we have to think of the
rransport of impurities across internal and external surfaces, as these
are exposed and films on them reform [166]; of the migration of these

jes and the effects produced when they are segregated, adsorbed on
, or associated with defects; and of their trapping and precipi-
ration as condensed phases or bubbles of gas within the solid [174, 178,
1797. in thinking of these phenomena, as of fatigue, which is also in-
fluenced by them (168, 169], we are led yet again to focus on the detail
of the microstructure and the processes occurring at the crack tip [108,
114, 115, 180 - 183]. In trying to characterize the intrinsic ductility
of a material, the delicate balance between microcrack propagation and
s1lip must be studied [184, 185]. In processes on this scale, the true
surface energy (or a modified surface energy which is still quite small)
is important, and it has been widely argued (for example, [38, 39, 1861])
that when this is changed, the whole macroscopic toughness may be affected.
The large observed fracture energy thus depends critically on a much
smaller surface energy., important for the microprocesses. Adsorption can
wmake a radical change in the true surface energy (see [187, 188], for

example), so that in this way we can explain the effect of trace impurities.

Cur model will not be complete however unless it takes account of the
rates at which the various competing processes ocCur. Despite the pre-
occupation with macroscopic toughness, the critical experiments and the
interpretation necessary to formulate such a rate-sensitive model of these
crack tip processes must be continued.

The subject of fracture embraces the full range of the study of condensed
matter; 1t is necessary both to test large engineering structures, and to
use the most refined techniques for detecting the presence of individual
stoms. We have to consider the deformation and flow of many types of
microstructure, and the effect of the environment upon these processes.
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The work touches on earthquakes and the failure of rocks and masses of
ice [189]; on the integrity of pressure vessels, pipelines, aircraft and
electrical generators; and on the structure of our very selves [180].
There are many interesting phenomena to be investigated and some formid-
able problems to be solved. We look forward to learning more about them
at an interesting meeting.
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