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FRACTURE CRITERIA FOR COMBINED MODE CRACKS

Wang Tzu Chiang*

1. INTRODUCTION

Linear elastic fracture mechanics (LEFM) has been successfully employed in
solving the problem of the unstable growth of opening mode cracks, but in
engineering practice cracks are usually under a combined mode state of
deformation in which Ky, Kyy and Kyyy are all present. Crack branching
will take place in cases where the loading is unsymmetrical, the crack is
in an unsymmetrical position, the material is anisotropic, or the crack is
propagating with a high velocity. Therefore, investigation of the fracture
criteria for combined mode cracks is important theoretically and has wide
practical relevance.

There are two kinds of criteria for combined mode fracture, i.e., energy
release rate criteria [1-3] and stress parameter criteria [4,5]. The pro-
blem of crack branching was analysed by Anderson [1], who was among the
first to make an attempt to solve the problem by a complex variable method.
Hussain et al [3] gave a detailed analysis of the energy release rate
criterion, but it appears to the author that there are some points in this
derivation which are questionable.

The complex variable method is employed in this paper to analyse the energy
release rate for combined mode cracks. A functional integral equation,
which contains no singularity, is derived for a branched crack problem by

a functional transformation. The integrand 91 (z) is expanded in eigen-
functions. The energy of fracture criterion for the combined mode (Ki and
Kry) cracks is then derived when the propagation branch is made to approach
zero. An energy of fracture criterion is also presented for the case when
a Kyryr is present. In addition, a new fracture criterion for combined
mode cracks based on the stress parameters is proposed.

2. FUNDAMENTAL EQUATION AND ITS TRANSFORMATION

Consider a crack branch, which makes an angle Y with the main crack, as
shown in Figure 1. According to [3], we have the following formulae for
the mapping function w(g):

W) = & g2 - NN - 2P0, (1)
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A= (1= y/m) Aa o= (1 o+ y/m) (2)

a1 - B1 02 - Ba A
Al ctg <——T——> + A2 ctg <*-—,—7-——) =0,
o

A - B2 oz - B3
A1 ctg («—~§—H—> + Xy ctg —-~——> =0

o1 - Bi\Az Oz = BiyAz r (3)
ry = 4A sin(-—f——;> sin<~—f;—~>
B2 - a1 Oz = Ba\Az
T2 = 4A sinl _—~:r-—£> sin<f—~3w~i>
.
Denoting
a2 - B2 2 - 0y
> =(f-jf‘":) , 8= —*—§—~*> (4)
we have,
s Ay 3
§ = tg ! —Etg%,
Bi = (e - 8) -~ (e + 8)y/w ,
Ba = (8§ -8€) -~ (e + &y/m+m, & $ (5)
Ty = 4A(cos E)Al(cos 6)A2
r> = 4A(sin 6)Al(sin E)AZ /

In the limit as ¢ approaches zero, r,, § and B, approach zero, «;, o, and

B> approach 7, and r1 approaches 4A. The boundary value problem of elasticity

can be reduced to the problem of finding ¢(g) and ¥(z),

O * 0, = aReldp' (5)/w' (£)} (6)
Oy = Op * 2iT = 2{[w(E)/w @)1 (5)/w' (5)] " ¥ ap'(c)/m'(v:)zé)

$(2) and Y(g) are holomorphic in the exterior of a unit circle and satisfy
the following boundary conditions:

(98] ( (7) o .

$(0) + === (0) + YT (0) =0, oL (8)

Denoting

$.08) = (& - "2 - P4 (9)

we obtain ,_

-2vi - ) »
e ) o' (9) g, (o) S iy
71 j; 549, TED
2

0. (8) = 6, (Z) - Ma(2) + Gy(g) + L

(o -z) o
110)
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after some manipulation (Appendix 1), where

6ol = (& - By (r - e'B2ymg + Ay
+ A(C -Y1 - v2) + A,
: - (11)
MalE] = TyAel(B1+Dz7/€

45 = Taet{®r®e)
Equation (10) is the fundamental equation after the transformation. The
coefficients T, I'', Ay, A; and A2 are determined by the behaviour of
functions ¢(&) and (%) at the infinity.

A further manipulation gives that

_ 1
b 9 = ¢! PSRN S
b (Yr.) (ro(’YZ) + vz - Y1)
i FP—_— Eymiva) (v - v1) - £5(v,) + f;(yl)l -
z Fo (ra) - Y2 = Y1) f )
where R g
Yi = e’ > Yz = et
b0(L) = TAZ + A, - Aﬁigéill (13)
o an Y T .
EoE) = (1 e )f P! (D g (0) (14)
2mi Lo o0(0 - )
8.(0) = (0 - &% )(g - oi%2) | (15)

In the 1imit as the length of the branch goes to zero, it can be shown
(Appendix 2) that

Prova) = dive) - 30 e o TR

, (16)
where
C* = Cy + iCy (17)
,\1 Y/Zx 1
c¥ %ixz‘ s {P(tz) * E'Qttz)P:(tz)}
Qtz) oA\ T/2X L L) - Pt to-E .1 e
@ TG Mt T [yt e
7 ¥A2 i I R % 0 t2+](t - t2)7P(t)
1 ta+E Pa(t) - Pa(ts) 1
¢ :/; TR dt - 3¢ [P1(tz + &) + Pi(t, - £)]
2=§
Plty) (1 - t3)
3 Lo : - . & —— In — } . (18)
287 [ P(ty + &) Pty - &) Q(t2) ty

Functions §(t), P(t), Pi1(t) and Py (t) are given in Appendix 2.

) The result
given in reference [3] is equivalent to the case C* = 1.

The calculated
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values of C* and C% are listed in Table 1. As the length of the branch
approaches zero, the stress intensity factors at the branch tip approach
the following limiting values:

Ky - ik = L2208 (19)
1 - 8B
where ) o Y/ 21
a= (K - ik el Tg) 20)
B=t (e 1) -cx (21)
and E and ﬁT are the stress intensity factors of a crack which does not

have a branch.

3. ENERGY RELEASE RATE AND ENERGY OF FRACTURE CRITERTON

In the vicinity of any crack tip, the stresses and the strains are de-
termined by

s . 8 €
o = J_ {K'I(S - cos 0) cos % + Ky (3 cos® - 1)sin %J
& 2V2nr - ‘ -
1 . : . P .0 g
0. = ——— {K (1 + cos 0) - K = 3 sint}cos = (22)
a o 1 I 2
2v2nr
1 iz 5 0
Tpg =~ {hlsxne + Kl[(o cos@ - 1)} cos 3
Y oA : -
1 T P . 9 . Goa 9 . .. 38
w. = I ‘/~2? {}\1 [(2x - 1)cos 5 - cos © - 1)sin 5 = & sin 2_]}
1 T . .0 La 28 ¢ T e 2 os 38
Ug = g iﬁ.Lk[ [-(2x + 1)sin 5 + sin E»ﬂ - kII [(2k + 1)cos 5 - 3cos 3 |
(23)

from which it can be seen that the displacements on the upper and the lower
edges are equal in magnitude and opposite in sign (apart from a uniform dis-
placement of the crack tip). When a branch of length r, at an angle ¢ to
the main crack is developed from the main crack, the energy released from
the elastic system is equal to

s ) T 5
R NS SO €5 I €V L e ) L2 ()
G oro=%5 J fogug’) + T ou Hdr - 5 J Logug™’ v T up Ydr
0 0
F2oe (1), 2 (1) R ) & * Froe }
= g {ogug * TagUn drt = Hen - T2tk 2t
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Therefore, the energy release rate is

g Erd gpay k50 24
S TSRS SRS § L [24.)
o o o é)
£y = {KI(l + cosB) - Kip 3 sinf} cos ?

(25)
p il a v rx . B
£, = {hI sinf + KII(o cos@ - 1)} cos 7

where the superscript ° is used to denote the functions and the physical

quantities of the crack which does not have a branch. The case of Figure 1
is equivalent to the case 0 = - vy.

According to the energy of fracture criterion, the crack will propagate in
the direction in which the energy release rate is maximum and it will start
to propagate when this maximum energy release rate Gpgy reaches a critical
value. The calculation of equation (24) leads to the following results:

for a crack in the sliding mode, the fracture angle is y = 76.2°, and Kije =
0.724 Kio, while according to the maximum og criterion, Kype = 0.87 Ky.

and the fracture angle is Yy = 70.5°, and the criterion of the minimum strain
energy density gives Kyye = 0.96 Ky and y = 82.3° (with v = 0.3).

For the case of uniaxial tension with an inclined crgck, thg fracture angles
are shown in Figure 3, and the correlation curve of Ky and K;p in the
critical state is shown in Figure 4. Also shown in these figures are the
available experimental results, which have a rather wide scatter band.

4. ENERGY OF FRACTURE CRITERION INCORPORATING KITI

As shown in Figure 5, due to the combined actign of the axial stress ¢ and
the antiplane shear stress T at infinity, all Ky, Kyi and Kypy are present
and they are

K, = ovma sin’g
Ky = ovia sinBcosf ) - (26)
Kepp = TVTa sinf

Since the antiplane shear produces only the displacement w, in the direction
perpendicular to the plane, the in-plane displacements u and v are both equal
to zero in the case where Kyry alone is present. As the axial traction is
responsible only for the strains in the plane, it has no contribution to

the strains in the direction perpendicular to the plane. When an infinitesi-
mal branch is developed, the stress intensity factors at the branch tip are

. o - -
K, - iKpp = 2 (27)
1 S 2
o m/2
. o 1 - 5
Kppp = Kp(5% ) Eel

where m = y/7. Equation (28) was derived in reference [9]
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B

According to reference [7}, the total potential energy released during the
formation of the new crack surfaces C! and C) can be calculated by

All = - 5 / » Tiuu].dS (29)

<0y

where T, are the tractions acted on the surfaces (! and C; before the crack
has extended, and Au. are the additional displacements produced after the
crack has extended. ‘With the action of the antiplane shear, the stresses
and the strains at the crack tip are

5] -
o ® icos = (30)
r'.}
N -
- (31)
Consider the propagation branch shown in Figure 1. The stresses along OB
before crack extension are
o
K,
° o I11 . . B 5
T =~ AT T e sin 3 + i cos = (32)
E 20 e 2
v 2qr
and the additional displacements after crack extension are
W= K {33)

where K111 is the stress intensity factor at the tip of the propagation
branch B after the extension. Substituting equations (32) and (33) into
(29), the energy release rate is obtained:

4 g s L 34
kII[k[TIb05 5 (34)

Combining equations (34) and (24), we obtain the energy release rate under
the combined action of Ky, Kyy and Kypye

. (1 s 2 3 I T i
G = gt 5 [hlil + KITtQJ + S kIIIhITI cos

1<

(35)

According to the energy of fracture criterion and equation (35), it follows
that

RIIIC V(1 - v) K . (36)

The correlation curvesof %I’ Er] and EIIE in the, critical state are shown
in Figure 6. The correlation curve of Ky and Kypy with Kyjj equal to zero
is shown in Figure 7. The curve can be represented by the following
equation
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K R ..
= |+ )= (37)
Ic ITllc

It can be seen from Figure 7 that the theory is in fairly good agreement with
with the experimental data.

5. STRESS PARAMETER CRITERION FOR COMBINED MODE FRACTURE

Among the stress parameter criteria for combined mode fracture, the max-
imum Oy criterion and the minimum strain-energy-density criterion are
those commonly used [4]. Both are based on a comparison of the mechanical
quantities on circles with the crack tip as their centre. This kind of
comparison has a clear geometrical significance, but it can be argued that
the different points on the circle are not under the same mechanical state
(Figure 8).

Consider the strain energy density in the front of the crack

_ 02 g B o B2 .
L (apeKy + ZdlzKIhII[ *+ a22K0) (38)
where
1 R el
ap; = Ten {1 + cos8) (kK - cosf)}
a1s = Téa-(z cosB -~ (k - 1)}sind (39)
Az = Téﬁ {k + 1)1 - cos®) + (1 + cos0) (3 cosd ~ 1))
and
3 - 4v  for plane strain
£ 3 - v  for plane stress (40)
1+ v

We choose the strain energy density W as a mechanical measure to character-
ize brittle fracture and consider the lines with equal strain-energy-densities
(the iso-W lines) (Figure 9). For example, if W = a, on an iso~W line To
the points Ag, Bg and Cy on the line will have the same strain-energy-
density. Since the elements, with the points Ay, By, Cp etc., as their
centres, contain the same quantity of strain energy, these points can be
compared with one another and in the direction of the point where the
circumferential stress o. is a maximum fracture is most apt to occur.
Thereby a new criterion s obtained to determine the direction along which
the crack will start to propagate, that is, the crack will start to

grow in the direction where the circumferential stress dg is maximum on

an iso-W line. Let the fracture angle be 64, then )

(05) . = max{(o,)
87 B=0, Wea, 0

The load at which the crack will start to grow can be determined by
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Lim V27T (o.), , = K. . 42

%5 ( d)ﬁzﬁo Ie (42
On the iso-W lines we have

W= 2 = ag, (43)

r

where S is the strain-energy~density factor given by

1 ] & o 2
S = & (ank] + 2a12K Ky o+ amK;I) . (44)

In the front of the crack we have

(45)

(46)

(47)

Equation (47) gives the relationship between the circumferential stress

Ty and © on the iso-W lines. Since ag is a positive constant, the fracture
angle B, can be determined by the point where the following ftunction f is
maximum:

£(6) =

i

cos

(48)

--{Kltl + cosB) - 3 sinBK

It
%

Calculated results for the in-plane shear of a plate with a central crack
are given in Table 2. A fracture test is proposed in refervence [3] on a
152 mm wide by 406 mm long panel of 0.05 mm thick steel foil containing
a circular crack, where a pure shear state at the crack tip can be real-
ised. The measured fracture angles have an average value of -75.4°,
which is in good agreement with the theory just described. The fracture
angles for the case of uniaxial tension with an inclined crack are shown
in Table 3 and they are in good agreement with the experimental data.

APPENDIX 1

#(z) and Y () are holomorphic functions in the exterior of a unit circle
in the image plane and satisfy the following boundary condition:

According to reference [1], we have
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W' (D) _ (g - e’y - ol% _ 255
wg) oo - Py - eMFy g '

By the mapping function w(z) a deflected crack in the physical plane is
mapped onto a unit circle in the z-plane, as shown in Figure 2, where the
arcs Ly and L are the images of the main crack and the propagation branch
in the physical plane, respectively. Hence we have

og(a) , T €Ly
il SO i (3)
w' (0) cg(oje 2t | o€ Ly

We locate the branch cut along a secant L, for the mapping function w(g),
so w(f) and w'(¢) are continuous across the unit circle (apart from two
points el™y and eltz),

Introducing a jump function h(o), as

1 o€ Ly

MOV = ememl 5 ey, @
and noting that g(0) = - g(0), equation (1) can be written as

¢ (o) - —E”fgﬂ— h(o) xp.':?;) i Q);_(g—; -0 . (53
Let

£,(0) = (0 - ePly(o - oiB2 6

£.(0) = (0 - '™y (g - (1% 7

¢, (a) = £, (0)d(0) (8)

and multiplying equation (5) by the function f«(0), we have

b, (o) - #E= h(o) (o) ¢ £.(0) d (o) =0, o€l (9)

ming that the function ¢(z) has poles of order one at the points

elBl and ¢ = 01{2, it can be shown that the function fx(z) w(l/z) is
holomorphic in the interior of the unit circle, except for the origin.
From equation (9), using the extended Cauchy's integral formula, we obtain

~h (B) + G_(5) - T(0) do - Mg(g) = 0, zED

: (10)

where G, () is the main part of the function ¢% (%) in the neighbourhood

of 7 = « and Mo (&) is the main part of the function f,(z) Y(1/Z) in the
neighbourhood of ¢ = 0.

Assume that at infinity we have

D) = TAZ + Ag + AL }; ..... (11)
Wz) = T'AZ + By + BL . ?-i* ¥ spmiu (12)
4 (%



Fracture 1977, Volume 4

From equation (10) we can obtain ) o
(-¢2YH 4 )

= g do
2mi {0-z)
L2

L) = 6 (8) - Mo(2) + Gl(g) +
(13)

where G§(z) is the main part of the function

g*é@) $| (%))

holomorphic in the interior of the unit circle, in the neighbourhood of
¢ = 0. From equations (11) and (12), we have

GolZ) = (T-¥1) (G-v2) (TAT+AG) + Ay (Z-v1-v2) + As (14)
Mo(Z) = Trayive/z (15)
G§(2) = TAoio2/c (16)
where
N eiﬁl’ o = eiBz, oy eiul’ s 1= REH
Let _— «Tiﬁ__ » 4
Fo(g) = U ;W? ) { Tu_é?) g*éc) do % (17)
L2

Equation (13) becomes
P (8) = (C-Y1) (£-v2) (PAC*+AQ) + (T-v1-Y2)A; + A,

» 2 (01027 ~ ival") + fol). (18)

In the limit as £ appraoches vy and v, from outside of the unit circle,
we have

SAryz + Ap + ;f— (01627 - v1¥2T') + £3(y1) = 0
1

s (19)
Ay + Ap #l~(0102T'~ Yiyzl') + £5(y2) = 0
2
from which we obtain B . -
L folyz) - foly:)
N L
(v2 - v1) -

Yifo(v1) -v2fq(v2)
g 5= ~
{va - v1)

Substituting equation (20) into equation (18), after re-arrangement, we
have B ~ -
1 folg) - folyz) £o(z) - folyy) .
PE) = do(L) + : - o (21)
(y2 - v1) (¢ - vz) (¢ - vy1)
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where

$0(5) = TAZ + Ay - é-(f’+ JE) (22)
&

and

'C Z-Y, = - =,
S () - ¢5(C) + L ;EZLL*lL;;1<l_..f°€§) + fol(ye)
(Y2-v1)

- Bl eya) - £0(8) + Fi(yy)

(C-v1)
Using Taylor's formula with remainder, we have
Fo(C1) = fo(2) + £1(0) (g1-0) + 1 £9(e+0(21-0)) (21-0)%  1£,2,€D
As &) goes to Y2, we obtain

foly2) = fo(g) + £3(2) (ya-5) + B (C+0(y2-2)) (v2-2) 2 (25)

to]—

Substituting equations (24) and (25) into equation (23) and let o go to
Y2, we obtain

B10Y2) = bd(ya)

Y2-Y1 )
SRR 8 (v2) (Ya-v1) - Fog £97 (4 o
)3 £ (va) - B0 ) - F0) v e ) 26)
(Ya-y1)*
APPENDIX 2
Let the function o () bhe
ce2YE N
folz) = (3-%—7.,- = ¢ do, L eED (27)
21 L

[f the Goursat functions in the physical plane (z-plane) are $1(z) and
Y1(z), we have

L) = dr(w(@)), o' (1) = PLW (G W ()
Let the region between the arc L, and the secant T» be denoted by T,, as

shown in Figure 10, then the function EII/C) is holomorphic in T, and
takes the same values on Lz as the function w(z)e? » sectionally holo-

morphic with the cut fé. Therefore in T, we have this identity:
v G) = wgyer™, e, (28)
Function ®'(1/2) is also holomorphic in T2, therefore,
; ~2vi < . <
0(o) = e 1T 13 (1/0)g. (0)ds cp- c
fo(g) = FrT — 560 ’ ceED (29)

Lo
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where the integration path is already shifted to the secant L,. We have
the following relations:

- 1 1 1 1
D1 = ' = v 1
4] z ¢ = ¢1 vz owog

o _'ZYi CLG=¥3) (E=Y5) 2Y1 T, .
= (bl(W(C)C ) *"*——‘*‘(r 5,) (c-52) w(g)e®'", T E&€T2 (30)

As is well known, the function ¢;(z) can be expanded into the following
series:

o0 \)
$1(z) = 2 A (z-2) " (31)
n=1
m vn'l n
t(z) = 7~z = 32
¢1(k) = nzlvnAn(_ zy) 5 Vo =3 (32)

in the neighbourhood of the propagation branch tip z = z». Hence

b v -1 o0 v -1 s
- —f 1 —\n _ T n )ng(Vn-l)
:p'(w( )) % VnAn(w(z') - 22> = X \)n/\n(‘nuz) e .
n=1 > n=1
when zeTz. Substituting this expression into equation (29), we have
-2Y1 o0 v -1 2yiv
e - (1-e"2") S w (0 (0-Y1)(0-Y2) & 5 (o ra. n e Ndg
£a(8) = - ~5e T £ VA (W (0)-w(y2))
T2 n=1
= - (1-e") 3 v A f(p)e? n (33)
n=1
where
N =)
T w_(0) (0-v1) (0-Y2) o Yy -
RN N CR) o =l e oY

and w (o) refers to the values of w(g) on the secant L, as  goes to La
from inside of the region Ts. Introduce the following linear transtformation

T = 0y + s5(02-01) (35)
by which the exterior of the unit circle in the Z-plane is mapped onto

the exterior of the circle L* in the s-plane, and the secant ¢,0, on to
the segment (0,1) on the real axis. Then

~TA2i (02-0)%

w(z) = Ae o Q(s) (36)
Ay Y2

§ . & Cifl=s)"*® i

fi(s] = (1+es) (37)

e = 7201 (38)

Substituting equations (36), (37) and (38) into equation (34), we obtain

Workshop
o =TA2iy W 2V, +1
. _[Ae - n (0p-01)
fn(;) _< 61 ) 2mi
;OIS o eoseon ] (t " gt 39
0 (t-s) [o1-71 (o2-00) [ (£) - (s)] = (39)

fn(8), £1(2) and £(Z) exist everywhere in the exterior of the unit circle
and on the unit circle, including the point £ = Yy, except for the points
01 and Op. Using the above expressions, it can easily be shown that for
the case that n > 2, fn(g), f4(2) and f};(5) all approach zero in the limit
as the length of the propdgdtlon branch goes to zero. Hence in order to
find fo(Z) in the limiting case it is only necessary to calculate f(Z),
which is

i

(02-01)2 V/A gaoas @) (t-sy) {oyys + £(02-01)} 4y
(t-s) YT (0) - Qs2)

£1(5)

and

£7(2)

i

‘/Ae_WlA2 0T () (tese) lor-yy ¢ t(o2-01) ) dt (40
= J

g (t-5)° V(0 - Bis2)
where s2 is the image of vya:

5, = Y2=01)

) (02-01)
On the other hand, since the numerator of the function  (t) takes real
values when t varies on the interval [0,1] of the real axis, ~(t) can be
extended analytically from the lower half plane to the upper half plane

through the interval [0.1]. Therefore, the function O(s) can be expanded
into a Taylor's series in the neighbourhood of s = s, with a circle of
convergence including some part of the interval [0,1]. Since w'(y2) = 0
and 2'(s2) = 0, we have
- o (n) . .
1 ~8(s2 5 L=
Pult) = S (t)-si(se) _ 3 Sl__ﬁ’ (t-Sg)n 2 (41)
(E=s55) n=2 .
in the interval. Denoting
P(t) = - i vV Po(t) (42)
1
= 1t
Q(s2) = 7%: s __=f(e)dt (43)
2T o
and integrating by parts, we obtain
! 1P(t)~P(92) 5; 1\ 1
= P (s, e
e [L
; P(t) Plt) .
) Q(Sz)g[fa+ [1] de %—fb - t=sy 4o
* b (r-sa)p(r) 2 (t - s2)
3
L b L b
1 N (b-s,) 1 [|P() 1 P(t) ] 1
+ =[Pt 1 - = - - =
2 [ t {}t=sz n (a-sz) 2 (t-s,) }d 2 (t~sg)2 a(2m
(44)
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where all integrals are Riemman integrals in the ordinary sense. In the
limit, as the length of the propagation branch approaches zero, we have

Ay

S2 >ty = A;-, Q) + t (-t "2 (45)
4

' P(t)-P(ty) dat _[J;ZMEg ! ]~_‘_§£wm.__~
b 0 ta+E(t-t,) 3P ()

,%_ [Pr(t2+8) + Pi(te-8)1]

P(t,

:*'Tt_‘*

1 j;mj _ s [Pty
) ta " (Q(t7)

m]»—-

Pg(‘tz))} (46)

.;, celt) L (47)

1(t) =

(48)
and £ is an arbitrary positive number that satisfies the following condi-
tion: )

28 < Xg = min {i;,0,} (49)

It is easily shown that [13]

~(n) 2 \?

195 ) | < aeea) | - e )] - n23 (50)

Hence the following Taylor's series exists:
‘Z(n)( )

2(t) = Q(tz) + ' (ta) (t~tgy) + -.. ~—~—-~—?- (t-t)™ + ... (51)

when [t-t,] = &. From equations (40) and (46), we have
B A TAni

Lim £77 (y,) = - gg/he_"% D (52)

. & T

e+0

Lim £17(v,) = 0 (53)

>0
Due to equation (26}, we have

P (y2) = ¢oly2) - K £ (v2) (54)
as £ = 0. Using equation (33), we can obtain

1 ‘ i d o me VI
TEO) = - 2 ey LneYie iy, o L o, M) Ehe Ve mAar1)i/2y
) - ) - (55)

I't was shown in reference [1] that
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2 Hhr-
1 AL 1 (K ; _\/:¢v (vz)

T M= = AKpe) s SR (56)
. — M 3Ry :
VATYEY N

VeﬂxliW”(Yz)

Substituting equation (56) into equations (54) and (55), we have

O (Y2) = 05(v2) - (1 - e Ty 5 (57)
where
y/2m
C* = 2 (%l) Di = C3 + icx (58)
Y/2n§ ) )
C* = (é%) {P(tz) + %-@(tz)Pz(tz)} (59)
v/ 2m

o N : ty-&
¢ = S(fr?) (Az) {fz(i fo*(%}?:%gd‘ [f f J“‘ -

ta+Ef(t-t2) °P(t)

ty+E

Lo " "Pa(t)-Po(ty) 1
"2 T DF [pl(t2+5]+P1(t3~E)]

: ']t'z*?: (t-t2) 28
r -_l._., _,.%_l‘__ _ _'__‘l____‘ Pt ) L _1_ 'J_: Q } )
+ 267 [P(tz+€) Pz(tg_g)] + 5ts) In -l (60)
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Table 2 -89 for in-plane shear (in degrees)
Table 1 Values of Cf and c§ =
v 0 0.1 02 0.3 0.4
S-criterion 70..5 4.5 78.5 82..3 86.2
¥ 0° 5 10° 15° 20°
ci 1.00 1.0003 1.0010 1.0023 1.0042 Present criterion 0.5 723 745 765 s
lofe! 0 4.137x107° |8.2097x107° 1.250%107 2 1.678%10"°
25° 30° 35° 40° 45°
1.0066 1.0095 L0131 . ] L0222 s . R
’_7 — 204 = LSRR 2 L. 02 - Table 3 FFracture angles of inclined crack under uniaxial
2.116%X10 “12.566X10 “ 13.031x10 ~ 3.515x10 “ 4.022%x10" 2 tension (in degrees)
50° 55° 60° 65° 70° 5] 30 40 50 60 70
1.0279 1.0343 1.0417 1.0500 . 0594 s : -
— = — o - L3098 - Max. Oy criterion 60.2 55.7 50.2 43.2 35:2 .3
4.555%10 5.118x10 5.178%10 ° 6.361%10" ¢ 7054%10°° y 5 )
: : 2l . S-criterion 63. 5 56.7 49.5 41.5 31.8 .
Present criterion 62.4 56.2 49.9 42.4 32.6 "7
75° 80° 85° 90° Test results [4] 62.4 5546 51.:1 43.1 30.7 B
1.0700 1.0821 1.0957 1.1110
7.804%10°%18.624%10° % |9.524x107 2 0.1052
‘o Figure 1 Crack with branch
main crack
¥a
0 .
Figure 2 ig-plane
15
0 151
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Figure 5 Combined action of axial stress
and antiplane shear stress t
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Figure 8 Comparison on circle

A

Figure 9 Iso-W line

Figure 10 Circle on ¢-plane

Figure 11 s-plane
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