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CALCULATION OF STRESS INTENSITY FACTORS
FOR COMBINED MODE BEND SPLECIMENS

Wang Ke Jen, Hsu Chi Lin and Kao Hua*

INTRODUCT ION

In order to test combined mode fracture criteria experimentally it is
necessary to use specimens with a wide range of Ky and Kyp and to obtain
calibrated curves of Ky and Kyj values for these specimens either by cal-
culation or by experiment. As no such calculated curves of Ky and Kyy
values were readily available for three-point-bend specimens with cracks

in an unsymmetrical position (Figure 1), such curves were obtained by use
of the boundary collocation method and the finite element method. The
boundary collocation method was first used by Gross et al [1,2,3], to cal-
culate Ky values for opening mode specimens. Later the method was used to
calculate Ky and K{1 values for some combined mode specimens [4,5]. As

for the finite element method used to determine stress intensity factors,
growing interest is now directed to special elements at the crack tip [6,7].
A term in Vr is included in the displacement functions of these special
clements, where v is the distance from the given point to the crack tip.

As this term gives the required singularities of stresses and strains in
the vicinity of the crack tip, a higher accuracy can often be obtained with
relatively fewer elements. Since the other elements around the special
clements are still ordinary ones, whose displacement functions do not con-
tain the terms in vr, the results obtained by use of these special elements
are not very satisfactory, especially in the case when the size of the
elements is decreasing. It should be noted that convergence of the results
cannot be insured for elements of diminishing size, if the condition of
constant strain is not satisfied by those special eclements [8], as is the
case with commonly adopted ones. lowever, the distorted isoparametric
elements, proposed by Henshell et al [9] and Barsoum [10], satisfy the con-
stant_strain condition and their displacement functions contain the terms
in ¥Yr. The 8-noded isoparametric quadratic and triangular elements with
the mid-side nodes near the crack tip at the quarter point have been used
in the vicinity ot the crack tip and their displacement functions contain
the terms in vr. Now we have succeeded in including terms in Yr in the
displacement functions of any isoparametric elements at any arbitrary
positions. When these special elements are used in a wider area, not
restricted to the vicinity of the crack tip, the accuracy of the calculated
results has improved considerably.

Analysis of the energy-momentum tensor, which was proposed by Lshelby [11]
and was later used in combined mode fracture criteria by Hellen et al [12],
showed that this kind of application is questionable theoretically, and
that the results thus obtained are doubtful [13]. In the meantime, an
approximate relation between Ky and Ky is used to derive the approximate
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for the bend specimens mentioned above. The results cal-
formula are compared with those from the boundary colloca-

2. BOUNDARY COLLOCATION METHOD

Consider the following expansion of the stress function with the crack
tip as the centre:
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According to the approach adopted by Gross et al [1,2,3], the expansion is
truncated to the first 2N terms and M(MzN) points on the boundﬂry of the
specimen are chosen. From the boundary conditions on these M points, ?M
equations are obtained and the 2N coefficients in the tyuncuged expanS}pn
can be determined. The values of Ky and Kpy are determined from the first
two coefficients: %

I

Ke= - CV27 , K. =Dy /27 . (2)

It

Note that as the term in D> in equation (1) is identical witb zero, thlS‘
term should be deleted from the resulting simultancous equations, otherw{se
an overflow will take place during the calculation if M is equgl to N. The
overflow was mentioned in [4] by Wilson et al, and the reason is now ex-

plained here.

We take 43 terms and choose 63 collocation points. The calculated results
are shown in Table 1. It can be seen from Table 1 that Kleam/M und. '
KTTBWUZ/Q depend on a/W only in a wide range (as long as the crack tip is

not very close

to the concentrated forces and the support points). It

follows that the values of Ky and Kpj can be determined approximately E?om
the bending moment and the shearing force on the crack section, respectively,

5. FINITE ELEMENT METHOD

An 8-noded isoparametric quadratic element is shown in Figure 2. Its shape
functions are
1 . . o -
Ni = :1_ Gk # :lft))(l * T»iﬂ)(%ii £ ”i” 1)
for the corner nodes,
: 1 2 {3)
Ny =5 (1 -£8%(0 + n;n) )
for the mid-side nodes with Ei = 0, and
L ¢ 2
Ny =5 (1 +g.800 - n?)
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for the mid-size nodes with Ny = 0. Taking the side N = +1, we have

(Figure 3)

.. EQ - )
Ni= - T
No = 1 - g2

N3 = .\» ~ 2l

By the coordinate transformati
side is assumed to be mapped i

(4}

on used for the isoparametric elements, this
nto a segment AB on a line passing through

the crack tip O (Figure 3). 'The lengths of OA and AB are equal to Ly and L,

respectively. The point, ¢ =
to divide the segment AB into

0, is mapped into a point C, which is supposed
4 ratio of p and (I-p). If the coordinate on

the segment AB, after the transformation, is denoted by x, it follows that

x= - R0 g ey S8, .. s
Let Lo/L = k, it can be shown that
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By substituting equation (6) i
element, we obtain expressions

nto the relevant formulae of the isoparametric
for the displacement that include terms in

/T . Let k = 0, then the relations given in [9] and [10] can be obtained.

From equation (7)., it is easil
larger. That is to say, that
(undistorted) ones farther awa

For the 12-noded isoparametric

Y seen that p approaches 1/2 as k is getting
the distorted elements approach the normal
y from the crack tip.

quadratic element (see [8]), if we assume

that the mid-side nodes of the distorted elements divide the side into a

ratio of p, (4q-p) and (1-q) (F
is again established, when

igure 4), it can be shown that equation (6)

p = é [T - dk + 4 /(% 1]
(8)
q = }; [4 - 4k + 4 A7)

The corroiﬁonding expressions
: : kol
terms in vr and rv/v

To test the method we consider
a symmetrical position. The g
idealization are shown in Figu
use triangular elements, which
ones [10].

First we use the same procedur
elements in the vicinity of th

for the displacement thus obtained contain

a three-point-bend specimen with a crack at
eometry of the specimen and its finite element
re 5. In the vicinity of the crack tip we
were shown to be superior to the quadratic

e as given in [10]. Only those triangular
€ crack tip are taken to be distorted ones,

with the mid-side nodes near the crack tip at the quarter point and all
other clements taken to be normal ones. The final results are shown in

Figure oa. By the use of the

calculated values of the displacements of
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the points on the crack edges, the apparent values of the stress intensity
factors can be determined from

; 2, 9)

RI is plotted against distance, r. By ana]ysing the ?xp?USIOnvéf Ehifd%%_
placement at the crack tip, it can be shown that the app}renF va ¥L‘ RN
is a linear function of r, if r is sufficiently sma}l. th intersecting .
point of the straight part of the curve on the vgrtlcal axis (r = 0) g;ve:
the true Ky value. Some points near the crgck.tlp that deviate f{o@ L}? i
straight line can be seen in Figure 6a. Th13.1nd1catos that these apparen
values of K[ are questionable and should be discarded.

Secondly, we re-calculate the mid-side nodes accor@%ng to equation (7) for
all elements in the shaded area of Figure S. The final rosults are spown
in Figure 6b in the sense that all points near ?he grack txp‘fall on dy‘ :
straight line, as expected from the analysis. The 1ntersect19g ppxnt‘%%vi:
KIBwam/M = 7.79, with a/W = 0.4. This is in gooq ag{ﬁement1W}th the resu
calculated by the boundary collocation method: K{BW™/M = 7.71.

4.  APPROXIMATE RELATION BETWEEN KT AND KTI

For any plane configuration with a crack as shows in Figure 7 it can be
proved that

S0 _ R ) O (10)
Ji = - gy= S Wy - L - 5% ds
o= - 8U L wdx - T - 94 gs (1)
vE = ds ¢ o= Ay

where U is the total potential energy of the system and C is Ehc ex?e{igr.
contour of the configuration. Equation (11) gives the_rate or‘ﬁh?.yngjea§e
of the total potential energy as the crack translates in the dlrcut%on ?Tr~
pendicular to the crack. Equation (10) defines the J-integral, who;erri ue
is path-independent, as long as the path starts at the ]OW?T ?dgo o.‘lxpd
crack and ends at the upper edge. As for equation (l1), }{ can bo'p??ve
that the value of the integral is also path~independen§{.]f thc"p01nta on
the crack edges remain intact [11]. If a contoar D sufficiently near the
crack tip is taken, it can be shown that

oo My LLEVU K] g2, g2

Jio= fn Wdy - T - 5§~db = T (k{ + RIJ) ’
’ (12)
. U+ W+ K, ok

Jy o= [y - Wdx - T - R S 2K Ky

where

3 -V . ‘ e
e for plane stress

S (13)
3 - 4v for plane strain.
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Due to the properties of the J-integral, J, is equal to J;. It can be
shown that

= Js = f Wdx = A+vad =+«

R = J! =
2 i+ Tp 8E T+ ¢

Zoidx (14)
where Iy and T, are the upper and lower edges of the crack, respectively.
For the upper edge the integration proceeds from left to right and for
lower edge from right to left. Since G§ takes the same value on the upper
and lower edges in the vicinity of the crack tip and Oy dwindles when the
point moves towards the open end of the crack, it is expected that R will

be a small quantity and will not be very sensitive to a small change in
the crack length. So it is reasonable to assume that

IR
=0, (15)
Combining equations (15), (10), (11) and (12), we obtain
aJ! oJ!
1 2 4
5w SEr (1%)

from which we obtain the following approximate relation between Kj and Kyg:

3K, oK oK 3K
e T < L T i
Krsr * K3 K g K= 0 - LLES

If we further assume that KI and Kyp can be determined by the bending moment
M and the shearing force Q on the crack section, respectively, we can write

. M - a

Kp = ——f (¥ (18)
1 BW R b h-)

; Q 5 i

K = U (-t
11 B w2 S W)

After substituting equation (18) into equation (17), we get the following
equation:
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The equation is solved to obtain

a /W a a
£, (8) = —t— f : [fb W'):t 4 - (28]

= £ i) 0

b\W

For fh(u/W), we make use of the results for pure bending due to Benthem
et al [14], the calculated values of fg(a/W) according to equation (20) are
given by Table 2 and are in reasonably good agreement with the results
calculated by the boundary collocation method.

5. CONCLUDING REMARKS

The paper has outlined the results of three methods used in the calculation
of Ky and Ky for combined mode bend specimens. If an estimate is to be



Fracture 1977, Volume 4

Workshop

made at the design stage of an experiment, the results (Table 2) calculated Table 1~ Calculated results for K{ and K for three-point-bend speci-

from the approximate relation of Section 4 can be used. Ky and Kyp can be mens with s/W=4 by the boundary collocation method

determined from the crack length a/W, the bending moment and the shearing < 7s.,75 ; N

force on the crack section. The final calculation for a specimen may be /W _—— 0 1/6 2/6 3/6 4/6 5/6 11/12

made by the boundary collocation method or the finite clement method.

Kf 7.71 8.50 8.55 8.36 8185 8.50 8.50
0.4
K% 0 1.032 1.4 1.350 .298 1.376 1.644
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Table 2 Calculated results due to Eyuation {20)
Differencel
a/w fb(a/W) fs(a/W) f;(a/W) in
percentagel
0.05 2.54 0.0636
0.10 551 0.180
0.15 4.26 0327
0.20 4.97 0.496
0. 25 5.867 0.667
0.30 6.45 0.857
0.35 7 B2 1.080
0.40 8..-55 1.317 1.350 -2.5
0.45 9.60 1:557 1.488 4.4
0.50 11.12 1.838 1.840 -0.1
0.55 13.09 2,125 2.050 845
0.60 15.66 2.441 2,276 6.8
0.65 19.17 2.794 -
0.70 24.15 54077 ‘
Note:

£, (a/W) and f_(a/W) are identical with K} and Kip
in Table 1. fl(a/W) is calculated by the boundary
collocation method for the case 2si/s = 3/6.
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Figure 1 Three-point-bend specimen with crack in

unsymmetrical position

Figure 2

Figure 3

Figure 4

Workshop
y;=+l
q
w
< £ =
Em ~1 = §= 1!
7= e

8-noded isoparametric quadratic element

e
]
<
wn
i
it

C
I--o—-—- T i PL (1 p)L emmiiooed
L

Distorted side of 8-noded isoparametric element

Distorted side of 12-noded isoparametric element



Fracture 1977, Volume 4

Enlacgernent of the smallest eleninnte
i

Figure 5 Finite element idealization of a three-point-bend

specimen with a crack in
a/W = 0.4

a symmetrical position,
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Figure 6 Apparent values of stress intensity factors for

specimen shown in Figure 5

a Special elements are restricted in vicinity of crack tip
b. Special elements are not restricted in vicinity of crack tip.

Figure 7

Plane configuration with crack
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