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VARIATIONAL BOUNDS AND QUALITATIVE
METHODS IN FRACTURE MECHANICS

V. M. Entov* and R. V. Goldstein*

INTRODUCTION

According to modern fracture mechanics, to determine the conditions of
subsequent growth of a crack of given geometry, it is necessary to know

the stress intensity factor in the points of the initial crack contour as
well as in the points of all the subsequent positions of the crack contour.
This is of minor importance in plane and axisymmetrical problems but gives
rise to great difficulties in three-dimensional problems such as the problem
of growth of an opening mode crack in the plane of symmetry of an elastic
body.

The paper is concerned with some methods of determination of conditions
sufficient for a crack to be dangerous or safe in the principal three-
dimensional case mentioned above. The key to the problem is the notion of
positivity which is introduced here. The problem is said to be positive
if the application of arbitrary positive (wedging) tractions to crack sur-
faces gives rise to positive normal displacements of the surfaces and
positive normal stresses in the plane of symmetry outside the crack. For
positive problems there is the following comparison principle: the stress
intensity factor. at a given point of the crack contour grows as the crack
extends outside some arbitrary small region around the point. The stress
intensity factor grows also if the additional wedging forces are applied
to the crack surfaces. It follows that for positive problems a given
crack is more dangerous (i.e., gives rise to fracture during a shorter
period of time) than any crack it contains and is less dangerous than any
crack that contains it. This makes it possible to take into consideration
the conditions of growth of cracks with comparatively simple (''standard')
contours only.

DISCUSSION

The principle of comparison makes it possible to construct a two-sided
estimate of the stress intensity factor at a given point on the arbitrary
smooth contour of a crack considering contours of simpler form enveloping
the given crack and enveloped by it and having a common tangent in the
point under consideration.

It has been shown [1] that the problem of a plane crack in an infinite
three-dimensional body is positive. In [1] it was demonstrated for the
example of an elliptical crack in an infinite elastic body that the com-
parison principle is a highly efficient means of construction of two-sided
estimates of stress-intensity factors. The theorem may be extended to
include the case of an opening mode crack in a bounded body as soon as
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the boundary is sufficiently far from the crack. It has been proved that
the problem of an opening - mode crack situated in the central plane of an
elastic layer with traction-free faces is positive as soon as (d/h) < 0.7,

d - being the diameter of the plane domain occupied by the crack, 2h - the
thickness of the layer. The crack opening and stress intensity factor at
any point of the crack contour diminish as the thickness of the layer grows,
the crack goemetry and tractions on its surfaces being fixed.

The stress intensity factor is a local differential quantity, so that its
evaluation involves enormous difficulties. Nevertheless, the load dis-
tribution being prescribed there exists a family of specific so-called
""extremal" contours with the following two properties: 1) The stress in-
tensity factor is constant along the crack contour. 2) The elastic energy
of a body with a crack of given area attains its maximum value for cracks
with contours which belong to the family of extremal contours. The res-
pective values of energy and stress intensity factor are functions of area
bounded by extremal contours, so the stress intensity factor may be express-
ed through the derivative of the elastic energy on the crack area. The
extremal contours may be used as 'barriers' for crack growth in the sense
of the introduction. As a result it becomes possible to express the notion
of a dangerous or a safe crack in terms of integral quantities such as the
crack area and elastic energy of the body with a crack. If the comparison
principle is valid for the body under consideration and there is an extre-
mal contour such that the corresponding stress intensity factor is equal

to its critical value, then all the cracks contained inside the contour

are safe and all the cracks containing the contour are dangerous. Consider
an extremal contour I' which bounds a domain G of area S. It is assumed
that there is a supporting domain Go of area Sy, Gy < G. Then the extremal
contour generally has two parts one of which I'"' = I'ndG, and the second T
is free, i.e. lies outside Gy. The stress intensity factor on the free
part of T is expressed through the corresponding values of elastic energy

W as a function of area S: W = W(S) by the formula

- M daw
N*/py = (I-u)7 ds (1)

The true displacements in the points of the surface of a crack with a con-
tour of given form minimize the elastic energy W of the cracked body. So
through the definition of an extremal contour is devised a solution of a
"'maximin'' problem:

W = max min W
o 2
mes G =S G (2
Consider an example of an extremal contour. Let a crack occupy a domain
Go in the plane x3 = 0 in elastic space with surfaces act normal tractions
acting on its surfaces:

033 = —p(1+€xf) , p=const , €=const (3)

The constant € is assumed to be small. If e= 0 the extremal contour is
evidently a circle containing G,. For small € and with symmetry assumed
it seems reasonable to seek the extremal contour as an elliptical contour
of form:

X1 = aicosf, x2 = bjcosB, a; = a(1+8,), by = a(l+8,), §1,2<<1

(4)
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Part V - Analysis and Mechanics

The unknown &, may be determined using the condition N=const along the
contour. Some algebra gives:
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Now the equations (4), (5) give a family of extremal contours corresponding
to load of form (2), a being a parameter. The family may be used to esti-
mate the conditions of limiting equilibrium of plane cracks of arbitrary
geometry under loading of form (2) as outlined before.

8§, = ea?

To apply the approach presented here we must have some effective solutions
of three-dimensional crack problems for cracks bounded by etalon contours.
Such solutions may be constructed by straightforward use of variational
and variational-difference methods. Some numerical results are presented.
The results may be obtained using medium range digital computers.

The conditions for a crack to be dangerous or safe having been expressed

in terms of an energy criterion there is a possibility of further simpli-
fication of the elasticity problem under consideration. The simplification
is based on the following statement. Let the external loads 3n = ?(;) be
prescribed on a part S' of the surface S of an elastic body D, on the rest
of S being prescribed the displacements, u = E(x). The elastic constants
of the material are considered to be functions of coordinates: )\ = A(I),
= p(X). The quantity Q:

Q=ffs,?3dc-ffs,,3n§do (6)

may be considered as a functional of )\ and y; Q = Q(A,u). It may be shown
that the functional is monotoniec: A'(;) > A(}), u'(?) > p(?), V X €D, then
Q" = Q(A'",u") < Q(A,u). In particular, for 820 (the part S" of S is clamped)
Q is equal to the work done by the external loads. So it follows that the
work increases as the material rigidity in some subdomain of S decreases
and vice versa. Thus it is possible to estimate strain energy for a given
cracked body in terms of the energies of bodies of simpler geometry with
cracks bounded by extremal (at the prescribed crack area) contours. Con-
sider, for example, infinite space with a crack under uniform tension
normal to the crack plane. Now the free extremal contours are, evidently,
circles; the elastic energy is equal to half the crack volume multiplied
by the applied stress. This assumes that the volume V of a plane crack of
arbitrary geometry and area S, under internal pressure P is not greater
than the volume of a penny-shaped crack of the same area, so:

2
V<R 160w oy )
37T3/2

The inequality is an analogue of a well-known inequality for the capacity
of a plane domain [2].

In certain cases the energetic bounds may be applied directly to estimate
the stress intensity factors. For example, consider a circular crack of
radius 2 around a spherical cavity of radius p. The crack and the cavity
are under an internal pressure P. The potential energy is, by using
linearity and dimensional arguments:

PZ 3
W=T"-¢(%) ®)
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» being a dimensionless function. Through the statements of this section
we have ¢' > 0. Thus:

W _ 3p%2 fp P ., {o 3P2e2 o\ _ 3W(p,2) _ 3W(L,)
32 C T ¢(E> BT ¢ 7)< u ’7)= 2 ST
(9

It implies, using Irwin's formula:

HE = 3p%p

= N mmawy 4o

For v = 0.25, N < 0.56 P/T. For a penny-shaped crack of radius

PV2r_

m

r , N=

~ 0.45 P/t _.
[e] o

So a crack of radius & surrounding a spherical cavity of radius p is less
dangerous than a penny-shaped crack of radius

_ e
Teff = B(1-v)

In elastic contact problems this makes it possible to construct bounds

for the displacement of a die and/or the force acting on the die, with
the complex geometries of contact areas and elastic body and various types
of contact (sliding contact, frictional contact, etc.), on the basis of a
solution of the respective problems for dies and/or bodies of simple geo-
metries.

_ T
(for v = 0.25, Togg = 5—).
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