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UNSTABLE FRACTURE CRITERIA UNDER LARGE PLASTIC DEFORMATION

Tatsu Fujita, Atsuo Mizuta and Osamu Tsuda*

INTRODUCTION

So far the ductile fracture of metals has been discussed mainly on the

following three aspects: (a) the effect of some defects contained in the
material on ductility of material through a continuum mechanics approach
[1, 2]; (b) the development of linear fracture mechanics in reference to
the stress and strain distribution near a crack tip after yielding [3, 4,

such as that in metal working, and could implicate the Kc concept in linear
fracture mechanics in its extreme case.

UNSTABLE DUCTILE FRACTURE

If fracture occurs between the yield point and the load predicted by the
ultimate tensile strength, then the linear fracture mechanics is no longer
applicable, nor any other conventional fracture criteria, The present
investigation is concerned with unstable ductile fracture criteria, which

schematically shown in Figure 1. A curve 0DABC means the load-displacement
relation of the specimen with an initial crack length a, and ODEF with an
initial crack length a+Aa, respectively. The path C > F indicates that
the state of C g0es to a certain state F yhen a crack grows by Aa.

The following assumptions, designated KOBE-model, are postulated. (a) The
state of F is independent of path. That is, the point F is also on the
load-displacement curve of the specimen with initial crack length a+Aa.

(b) The ratio of a load P, on the curve OABC to a load P, on the curve
ODEF at any displacement is constant. Then, the load P-displacement A
relationship for the specimen with crack length a can be given by

P =F(a)-f(\) (1)

s
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and the function F(a) is the same as that in the elastic range where it is
well known. The validity of (b) has been assured by the finite element
analyses as mentioned in the later section.

According to the general theory conservation law, the following equation
is written at the onset of crack extension:

—Ge Pk, (2)

where W is the external work, U the internal strain energy, [ the effective
fracture surface energy, K the kinetic energy, and the dot denotes differ-
entiation with respect to time. From equation (2) and the first assumption
(a), a criterion for crack extension is given by

3T _ B(W-U) (3)

Ja da

Recently, the J integral [9] and the COD (crack opening displacement) are
used for the estimation of the fracture toughness of notched specimens, but
it is difficult to find their exact values by experiments or by calcula-
tions. Equation (3) is more useful than other procedures if the loading
displacement relation is given analytically as equation (1). So equation
(3) is applied to derive the unstable ductile fracture criterion in our
study.

THEORETICAL ANALYSIS
Though the criterion could be induced from equation (3) for any load-

displacement relationship, here we study a typical one described by a
power strain hardening law such as

o = ke, €3

where 0, €, n and k are the true stress, the true strain, the strain
hardening exponent and the material constant, respectively. According_

to the KOBE-model, the load P-displacement A relationship for the specimen
of such material with crack length a is represented by

P = F(a)+[1n(1+1/19)]"/ (1+A/1,) ()
and from the linear fracture mechanics and the equation (1)
F(a) = Ag-k*(1-2ma’/wolo) , (6)

where Ag is the initial area of cross-section of the specimen, l, the ini-
tial gauge length and w, the initial width.

The internal strain energy U can be given from (5) and (6) by

Aolok |

OH2 . (1-2ma%/wele) * [In(1+A/16) ] 1 *D . )
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Part V - Analysis and Mechanics

When a crack grows by Aa, the change of the strain energy AU becomes

- : v, .
- - =55 " ha+ Pear . (8)
And in that process, the external work is also given by AW = P.AA.

Putting (7), (8) and AW into (3), the criterion equation can be obtained:

ol _ 2mak

- [In(e/1)]17 . (9)

Ja 1+n

A crack growth occurs when the left-hand term in equation (9) reaches a
constant value G., which is defined as the critical strain energy release
rate. The unstable ductile fracture criterion is finally reduced to the

form
1 1
(1+n) -G S
l+n _ ¢ | 1I+n _
€ga = [__ET?TE—_ = constant , (10)

where € = In(1+A/1,), and €¢ denotes a uniform strain enough away from
notches at failure. The relationship (10) implicates the well known rela-
tions in linear fracture mechanics as its particular case, n = 1

>

12 . I
Ef-a = Tor = constant (11a)

or,

cf(na)la = Kc = constant , (11b)

where E is the Young's modulus.

EVALUATION OF THE THEORY BY NUMERICAL ANALYSIS

The purposes of the numerical analysis are to examine the assumption (b)

in the previous section and to calculate the values of the J integral and
the COD. The finite element method based on the infinitesimal incremental
theory by Y. Yamada [10] was used for this analysis. The specimen is
divided into about 300 finite elements and the ratio of crack length to
width varied from 0.0l to 0.1. Calculations were conducted for the double
edge notched plates under plane stress condition. The maximum increment

at each step was limited below 0.2% for strain increment or 0.1 times yield
stress for stress increment. A uniform displacement was sequentially
applied on both ends of the plate. The stress-strain behaviour of material
was assumed to be 0 = E*e below the yield stress cy, and 0 = keeh over O_.

The values of -(d Ineg/d 1n a) obtained by these analyses on n = 0.2635
material are compared, that is, a theoretical prediction 1/1+n = 0.7915,
while 0.86 by the J integral, 0.85 by the COD criterion and 0.75 by the

G criterion [11]. The theoretical value falls among three calculated
values and seems reasonable taking account of cumulative errors of numeri-
cal analysis. It is also confirmed in course of calculation that the slope
of the In€g-1n a curve is almost equal to -1/2 in the elastic range, which
corresponds to the theoretical value of linear fracture mechanics.
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EXPERIMENTATION AND EXPERIMENTAL RESULTS

The uniaxial tensile tests of 0.2 mm thick saw cut notched specimens of
normalized 0.80% C steel were conducted. The test pieces were 46 mm wide,

7 mm thick and 100 mm wide, 6 mm thick, and the notch depths at both edges
of the specimens were 0.2 mm to 32 mm. The variation of hardness through-
out the thickness of a specimen was within Hv 10. The mechanical properties
of non-notched specimen were as follows; ultimate tensile strength 91.9
kg/mm?, elongation 12.9%, yield stress 44.5 kg/mm? and reduction of area
20.7%. The Young's modulus of the material is 20500 kg/mm? and the strain
hardening exponent n is about 0.31 on true stress-true strain basis. Three
quantities were measured in the test; first one is a uniform uniaxial strain
away from notches by a plastic strain gauge, second one, an elongation of
the gauge length 220 mm and third one, an applied load.

The experimental results are shown in Figure 2. Below about 0.2%, i.e.;
before overall yielding, the slope of lneg-1n a relationship is -1/2,
while the slope is about -1.0 over 0.2% strain possibly due to unstable
excess yield strain and the effect of the ratio of crack length to speci-
men width. On the other hand, in the range beyond 5% uniform strain, the
slope tends to be flat due to the local necking of specimen. Between 0.2
mm and 1.0 mm in crack length, stable uniform strain conditions are satis-
fied, where the Ineg-1n a curve has the slope of about -0.76 predicted by
the present theory for n = 0.31 of 0.80% C steel. The agreement indicates
that the fracture criterion represented by equation (10) is appreciably
reasonable in case of unstable ductile fracture, so long as uniformity is
kept and materials obey a power strain hardening law.

DISCUSSION AND IMPLICATION

(1) In order to get a better fit for various engineering materials, other
expression of a stress-strain relation will be applied:

O=Y+H - eg 3 (12)

where Y and n' are material constants and €p is the plastic strain. In
this case, by the same procedures as in the former, the following represen-
tations are obtained:

1 v _
P = Ao(1-2ma%/wolo) (Y+He™ ) (1-Hn'e™ ~1/E)/ (14A/1,) 13)
H n! H n' H n!' B
a-[sf(Y + IIET'Ef) - § C¢ (Y + 3 €f )] = constant 14
Oor approximately 1
Tont
Ef . al+n = constant. (15)

Putting the value of each parameter into (14) and (15), the relationship
€¢-a is obtained for 0.80% C steel as shown in Figure 3. The former
theoretical result and the experimental result are also shown. There is
little difference among them and there comes a more simple conclusion that
since the strain hardening exponents of most metals are usually between
0.25 and 0.35, the product of a critical strain and the 0.75 ~ 0.8th power
of a crack length is almost constant, whichever representation is used for
the stress-strain relationship.
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(2) The present theory has the close relation with the Griffith criterion,
and also throws light on the physical meaning of reduction of area in con-
ventional tensile test, the historical basic ductility measure. If a
material shows an ideal power strain hardening characteristics and a speci-
men has infinite width, an ideal Ineg-1n a diagram will be drawn as Figure
4. Obviously, the unstable ductile fracture criterion is rewritten with
reference to the conventional Kc value,

1 3 1

o K E—

l+n Ic l+n

LS [n—a—z] : e
Y

While the true fracture strain e derived from reduction of area in con-
ventional tensile testing is plausibly given by

1

1+n
€3y = constant, (17)

where a; is the effective inclusion size of a particular material. Though
the lneg-1n a relation over maximum uniform strain €, is somewhat ambi-
guous due to necking of specimen, for 0.80% C steel €n is about 0.19 as
shown in Figure 2 and corresponding a; is estimated about 0.04 mm which is
reasonable value as the size of inclusions in the steel. So a whole physi-
cal interpretation is obtained throughout ductility by tensile test, i.e.,
unstable ductile fracture and brittle fracture. Another engineering appli-
cation to estimate the Ko value from e of tensile test is available on
these lines. The relationship should be

= (mea.-pit. I+ _ 1-n.gp
Kc = (m a; E € cy ) (18)

CONCLUSION

1) A fracture criterion for unstable fracture under uniaxial tension of

notched plates is proposed. The criterion for a power strain hardening
material is represented by:

1

l+n
€pta = constant.

2) The theory has been approved by means of two procedures; the numerical
analysis by the finite element method and the experiments with notched
plates.

3) The present criterion is identical with that of linear fracture mechanics
for n = 1, elastic body. In view of this theory, one can have better under-
standing about the reduction of area in conventional tensile test.
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Figure 3 Theoretical and Experimental Relationship Between Strain to
Fracture and Crack Length for .80%C Steel
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Figure 4 An Ideal Crack Length-Fracture Strain Relationship
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