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THERMAL FRACTURE IN COMPOUND MATERIALS

K. Herrmann and A. Fleck*

INTRODUCT ION

Composite materials, made by combining two or more materials with dif-
ferent thermoelastic moduli, play an important role in space travel and
reactor technologies because of their favourable mechanical and other
physical properties. From the standpoint of fracture mechanics, the
estimation of the resistance of such materials to thermal stresses
requires the treatment of the following problems:

1) Dependence of the specific fracture energy, as well as of the stress
intensity factor, on the position and shape of the interfacial area
between the individual phases of the composites, on the shape of the
free surface, and on the crack geometry.

2) Influence of the inhomogeneity of the material on the corresponding
physical quantities.

3) Calculation of the crack surface energy required for the formation of
new surfaces.

4) Consideration of plastic zones at the crack tips.

At present, there exist, to the authors' knowledge, only a few investi-
gations concerning the thermal fracture of inhomogeneous solids [1 - 5].
In reference [5], a representative element of a fibre-reinforced material
with a concentric surface of discontinuity was considered. This com-
posite had a crack in the matrix material, and was subjected to a well-
defined thermal shock. By using a near-field solution of this crack-
thermal stress problem, the crack edge displacement, the crack surface
energy, the strain energy release rate, and the opening-mode stress
intensity factor could be calculated for different material combinations
and temperature distributions.

[n this paper, an improved solution of the crack geometry considered in
reference [5] is used to calculate the plastic zones in the vicinity of
the crack tips. The validity of the DUGDALE model is assumed. Further-
more, a crack of length a = X3 - X3 in a thermoelastic two-phase solid
(composite circular cylinder of infinite length) with an eccentric inter-
face fibre/matrix is considered (Figure 1). The fibre and matrix of this
composite consist of homogeneous, isotropic, and linearly elastic
material, where the material properties vary discontinuously at the
fibre/matrix interface from the values Ef, V¢, af of the fibre to the
values Lp, vp, oy of the matrix, o being the linear coefficient of thermal
expansion. Initially, the solid has uniform temperature which is assumed
to be T = Ty (temperature of the environment) which also corresponds to
the temperature of the unstressed initial state. At time t = t*, the
cracked cylinder is subjected to a thermal shock, producing the following
temperature distribution (cf. Figure 1 for notation)
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T(r,0) = ) (1)

in which Tf + Tm, and both temperatures are constant. Moreover, the crack
tips x¢ = x3 and X¢ = Xz are far from the surfaces I'j (j = t,m).

ANALYSIS

Making use of the linear theory of quasi-static thermoelasticity for a
plane strain state, and assuming temperature independence of the thermo-
elastic material constants Ej, vj, oj (j = f£f,m), as well as heat insu-
lation of the solid with respect to its environment, the thermal stress
field existing in the cracked inhomogeneous solids with a concentric or
an eccentric interface, respectively, can be decomposed into two parts:
1) a regular stress field in the uncracked inhomogeneous solid, and
2) a corrective stress field with two singularities of magnitude p_ll2
at the crack tips where p is a local polar coordinate with respect to
the crack tip.

Considering the discontinuity of the given temperature distribution
function T(x,y), and using the stress function method, the regular stress
field in both cases (concentric and eccentric interface) can be obtained
from the solution of a boundary-value problem of the bipotential theory
[6]. However, in case of an eccentric interface, a closed form expression
for the AIRY stress functions ®j(x,y); (i = f,m) was only available by
consideration of the following conditions:

af+am, TE+T. (2)
The corrective stress field arises due to the tractions

(&4 m C
o (x,0) = -0 ,0) ; o ,0) = 05 (x1 £ x £ x2) 3
y( ) yy(x ) xy(x ) (x1 2 x2x (3)

along the faces C* U C~ of the crack, where 0$ (x,0) represents the
regular stress on the line y = 0 and is obtalned from the solution of the
boundary-value problem mentioned above. Therein, the sign of the stress
yy(x 0) determines whether a crack located at xj; < X < xz, y = 0 will be
open or will tend to close. Opening occurs only if 0 ,(x,0) is a tensile
stress over the prospective crack line which can be acﬁleVed by an
appropriate choice of the thermal shock. Moreover, the corrective stress
field has to satisfy the following boundary conditions on Ip:

T (Te®) = 05 00 (5 ,0) =050 < ¢ < 2) )

Further, it should also not violate the conditions of the rigid contact
at the discontinuity area I¢:

Bl o sl =0 [5]-0 []-o ®

where n and t refer to the normal and transverse directions respectively.
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Because of the complicated shape of the boundary of the cracked solid, a
closed form solution of the boundary-value problem (3) - (5) is not
available. But by assuming the crack is small in comparison with the
width of the matrix material (cf. Figure 1), and also that the crack tips
are far from the surfaces ['¢ and I'y, an approximate expression of the
corrective stress field can be obtained from the solution of the following
mixed boundary-value problem:

YC i m . o
yy(&:0) = - 0, (6,0) 5 (v =0, [g] <6) (6)
o“y(g,m =0 ; (Y =0,V6€) (7
(£,0) = 0 s (v =0, |g] >8) (8)
where
X1 + X2 X2 - X1
£ = X - Xq, Xo = 7 , 6= 3 (9)

In addition, the crack is considered as a discontinuity in an infinite
medium, at which the crack faces Ct U C~ experience the thermal stress
field induced by the thermal shock (1). Due to the assumptions made
concerning the position and the length of the internal crack, the desired
corrective stress field represents a small perturbation which must be
superposed on the regular stress field. A solution of the boundary-value
problem (6) - (8) can be found using an analytical method from reference
[7] based on the application of complex variable technique and on the
method of integral equations. Therein the expressions for the stress

G§y and for the displacement uy on the line z = z can be represented by
means of one complex potential ¥(z) according to

(£,0) = 2{¥'(z) + T' (D)} (10)
4(1 - v % o
w50 = —p— i {¥@) - Y@} (11)

m

Provided the following conditions hold for y - * 0:

y ¥ (z) »0; y ¥(z) » 0. (12)

Furthermore, the following relation must hold as |z| » « : ¥'(z) = 0(1/z%).

Then the complex potential ¥(z) can be given by means of the integral

S AL () + zha(t)
¥(z) = f : dt, (13)

2

where the functions Aj(t), (J = 1,2), are the solutions of a pair of ABEL
type integral equations:

& Ay (t)
d—f dt = - Wi () (14)

; (028 <96)
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Ehz (t)

£° -t

dt = - wy(§) . (15)

o&._\
(sl

d
4E

The right-hand sides of the integral equations (14) and (15) (without
S1gns) correspond to the even and odd parts of the regular stress G?Y(E,O),

respectively. The solutions of these integral equations have the tollowing
form:

s (t) t t wy (u) 4
N (t) = - ——f u (16)
2m d \[Ez—j-az-
t
fig ] = 1 uw; (u)
2(t) = - mo T-uz du (17)

where the explicit expressions for the functions Aj(t), (j = 1,2) are
omitted here because of space limitations. Finally, by means of the
functions Aj(r), (5 = 1,2) and using the formulae (11) and (13), the
desired crack surface displacement of the upper face C* of the crack can
be represented by the real integral

8L - 2 M) + ey ()
Te—==dt ;([£] £ ¢) (18)

SN IRV

c
uy(E,O) =

quwledge ot the crack surface displacement (18) also allows calculation
Of the elastic surface energy required for the formation of new surfaces
C"U C” in a specimen of unit thickness according to the formula

S

- c c
U= ‘jr 0yy(€,0) UY(E,O) de. (19)

Finally, using the value of the strain energy release rate for the Mode I
displacement which is defined by the integral

S
Gy = - g%{ ojy(a,c)) u;(e:,m dg (20)

the opening-mode stress intensity factor K1 can be calculated according
to IRWIN's formula:

E 12
‘Ko bW G, (21)

[he expressions for the strain energy release rate Gr and for the stress
intensity factor Ky become functions of the quantities a (the crack
length), xo (position of the centre of the crack), s (eccentricity of the
interface fibre/matrix), and T (temperature). Thereby, both formulae
mentioned above are related to the crack tip which is most vulnerable to
propagate. The latter behaviour is dependent on the position of the
corresponding crack tip relative to the fibre/matrix interface and on the
Stress distribution Oyy acting on the prospective crack line. Besides,
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the respective second value of the stress intensity factor can be obtained
by an appropriate variation of the parameter Xx,, keeping the crack length
unaltered.

Finally, by consideration of plastic zones at the crack tips in accordance
with the DUGDALE-model [8], the corrective stress field (10) must be super-
posed on a stress field resulting from a crack subjected to tractions Oy
(yield stress) in a small region in the neighbourhood of the crack tips.
The complex potential belonging to the latter stress field for the region

Z = Z can be obtained using the technique of reference [7]. By using the
condition of vanishing stress singularities at the crack tips £ = + a/2

of the true crack, the length of the plastic zones evolves after some
lengthy manipulations. Furthermore, preliminary results concerning
plastic zones in materials showing strain hardening were obtained.

NUMERICAL RESULTS AND DISCUSSIONS

The Figures 2 - 5 show the results of the numerical evaluation of the
formulag (18) - (21). Figure 2 gives the value of the crack surface
cnergy U for several crack lengths in dependence on the quantity x, =
Xo/Te. It can be seen that the value of U increases with increasing
cracf length. Furthermore, the Figures 3 - 4 show for the cases of a
concentric and an eccentric interface fibre/matrix, the opening-mode
stress intensity factors Ki(x1) and Ki(xz) for several material combin-
ations. These stress intensity factors were obtained by consideration of
the temperature dependence of the elastic and thermal material constants
as functions of crack length and temperature Tm of the matrix and the
quantity X,. The graphs mentioned above were given for a negative matrix
temperature, because according to the assumption Tf = 0, a cooling of the
matrix only leads to tensile stresses along the crack line. The stress
intensity factor KI(x1) increases strongly with increasing crack length
and with decreasing distance of the crack tip, relative to the interface
fibre/matrix, whereas the stress intensity factor KI(x2) is nearly con-
stant with increasing crack length. Extended numerical calculations are
in progress. Moreover, Figure 5 shows the length of the plastic zone at
the right crack tip according to the DUGDALE-model as a function of the
quantity Xo and the different Stress distributions over the length of the
plastic zone. The smaller plastic zone in the case of material showing
strain hardening can be explained physically as due to dislocation inter-
actions. The full length of the plastic zone may consist of two partic-
ular parts, the first one showing strain hardening and the second one
occurring softening. Then the length calculated from softening dominates
over that of strain hardening. There is an evident difference. Some
experimental results concerning fatigue strength of steel CK 15 [9] allow
a physical interpretation of the mathematical facts.

CONCLUSIONS

From a physical point of view, the crack-thermal stress problem treated
above is of significance for the study of the behaviour of small initial
cracks in a brittle or semi-brittle material stressed by well-defined
macroscopic thermal stresses. Hence, to gain an understanding of the
strength of such a material containing subcritical cracks, knowledge of
the elastic crack surface energy is important. This €nergy represents a
part of the elastic self-stress energy stored in the originally uncracked
specimen. In the case of a crack formation in a primarily uncracked
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solid, a relaxation takes place up to the point where the crack is arres-
ted due to shortage of the elastic self-stress energy. Consequently,
self-stress fracture, with regard to the velocity of crack propagation,
represents the converse case of fracture under the influence of external
loading. Further, it should be noticed that in case of cracks where the
surfaces, I'f and 'y, strongly influence the stress concentration at both
crack tips xt¢ = X1 and xt = Xz, the analytical method described above
cannot be used. At present, calculations using the finite element method
are in progress.
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Figure 1 Crack Configuration
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Figure 5
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