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THE STRESS INTENSITY FACTORS FOR X-FORMED ARRAYS OF CRACKS

0. Aksogan*

INTRODUCTION

In the present study, the interaction of arbitrary arrays of cracks loca-
ted along two intersecting infinite straight lines is considered. The
method of analysis is similar to the one used by the author for V-formed
arrays of cracks [1]. The new feature of a branched crack at the centre
is treated by a special procedure during the application of the numerical
method.

The analytical method used in this work consists of the joint use of the
Mellin transform and the Green's function technique. The system of sin-
gular integral equations, thus obtained, is solved by a special application
of an effective numerical method [2].

FORMULATION OF THE PROBLEM

In polar coordinates, in the absence of body forces, the stresses and the
displacements in plane elasticity can be given as follows:
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where the Airy stress function, ¢, and the displacement function, V,
satisfy the equations

V%0 =0 , vy =0 , LGQ\E)

_ a2
T\T 3p) @ o . (2)

In (1) and (2), X = v/(1+v) for plane stress and A = v for plain strain,
WU is the shear modulus and V2 is the harmonic operator.
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The Mellin transform of a function f(r), defined and suitably regular
in (0 < r < ®), and its inverse are defined by
- - s-1 1 cHie -s
f(s) = J f(r)r dr , f(xr) = 57 ;S f(s)r ~ ds , (3)
o c-ie

where ¢ 1s such that rc'lf(r) is absolutely integrable in (0,®). The
transforms of the derivatives can be found by using the relation
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In plane elasticity problems, in which polar coordinates are used, the
solution of (2) for each infinite wedge gives:*

5(5,6)=Zlexp(ise)+21exp(-ise)+Zzexp[i(s+2)6]+22exp[-i(s+2)6],

(rZR)=21 (s+1) {Z15 exp(is8)+Zz(s+1)exp[i(s+2)0]-Zoexp[-i(s+2)0]),

(rEV)= - Eﬁl{zls exp(ise)+Zz(s+l)exp[i(s+2)6]+KZzexp[-i(s+2)9]}

(6)
where
R = Tre + 108 " u = ur + 1u8 P
du u (7
V=F+1F’ K =23-4r 3

and Z; and Z,, with their complex conjugates 7, and Zz, are independent
of 9.

In the present work, the isotropic homogeneous infinite plane is separated
into four infinite wedges along the four lines of cracks (see Figure 1).
Let the union of all the straight line segments representing the cracks
along one radial line be called L and the remainder L', the former being
finite and the latter infinite. The singular part of the solution may be
formulated with the following boundary conditions:**

* The complex notation used here is only for convenience.

**The crack surface tractions, considered here, are the reversed self-
equilibrating stresses along the crack lines for the medium without the
cracks under the actual loading.
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Ry (r,0) = Ry(r,2m) on Li+Ly ,

Vi(r,0) = Vy(r,2m) on Li ,

Ry (r,0) = wy(T) on L, 5

Rj_l(r,ﬂj) e Rj(r,aj) on Lj+L3 , (8)
Vj'l(r,ej) = Vj(r,ej) on L; 5

Rj(r,ej) = wj(r) on Lj , }j=2,3,4

where the subscripts show the region or the boundary to which a certain
quantity pertains. Needless to say, wj(r) are the complex tractions on
the surfaces of the cracks.

Making use of the Mellin transform and the Green's function technique fol-
lowing the method used in [1], the stress expressions for the wedge-
shaped domains are found in the following form:

2 4

R (r,0)=% J H .(r,8,0.)dp.+ I [ H,.(r,8,p.)dp.,8=1...,4
o (1,9) sl i 15¢ Pyddny L, 25 (r,8,0;)de;

j j (9)

where
c+iw p.\s+2
_ 1 uds i a-1 2 ][

H .(r,8,p.)= = —_— 6-0.)|| -sg. (p.
aj (o0p)= 7 T GACEICRY (r > iﬁ eXp[%s( L %85 5

+i(s+2)fj(oj)]+(s+1)Ba'lexp[}(S*2)(S—Bj)J[gj(oj)—ifj(pj)]

+BZ_“8XP[}i(S+2)(6—9j)}[gj(pj)+ifj(oj{]z,a=1,2, j=1,...,4
(10)

in which B = exp(2ism) and*

"

g1 (X)+if1 (x) = Vi(r,+0) - Vu(r,2,-0) . r on Ly+Li,

V. (r,8.+0) - V, ,8.-0), L.+L., j=2,3,4.
g By 0] ~ Vg aRy=0)s wiom Ly¥hys
(1)

gj (x)+1f(x)

Applying the stress expressions (9) to the third and sixth of equations
(8), the integral equations of the problem are found as

*The unknown functions, f and g, are the densities of the dislocations of
opening and edge-sliding modes, respectively.
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2 4
L S H .(r,8,,p.)dp.+ L S H,.(r,8,,0.)dp, = w, (),
g1 n, HUOUETI i Gy, ATV R
j J
ron Ly, &=1,...,4. (12)

For continuity of the displacements, from the second and fifth of equations

(8):

djl 4, 2=1 (13)
; J+if. (p.)|dp. = 0, j=1,...,4 , %=1,...,n. ,

/ [gj (py)+i J(pJ)] °; i ;

Cis

j%

wnere n; are the numbers of the cracks on the corresponding radial lines
(see Figure 1 for the integration limits).

puring the solution of (12), the kernels Hy;, H,; are evaluated making use
of the residue theory by a special procedure (see reference [1}). After
lengthy but straightforward computations, (12) takes the following form,
in terms of real variables:

‘; A Sai 16y
= . R § , 0 . )lg. (0.
=L Ly || e5T * 265 AV 53 B3 1)
B S i | A T3 G (14)
205 2\ T i s T
4 « [0,
1 1 g (0.
= '21 Lf {ij Hj <r , aj) 8 (oJ)
o &
S . 1-6 ., [o. 1
RS I 2 (p.)edp. = & T
+ [pj_r + ZDj Hy (r s eaj)] J(DJ)} DJ 2u Pa( )
T on La’ o L) ISR
where
wa(r) = qu(r) + 1 Pa(r) 3
= = = ) - o I L T |
8 8j - 0, = M /N, j

n

and H;(x,ZMﬂ/N), 2=1,...,4, are defined in the Appendix.

180

Part V - Analysis and Mechanics

NUMERICAL RESULTS

A special application [1] of an effective numerical method [2] is used for
the solution of (14) subject to the continuity conditions (13). The nodal
points for collocation are chosen at the zeros of the Chebyshev polynomials,
in the ranges pertaining to each and every crack in the medium (see ref-
erence [1] for details). It must be noted that, when two or more cracks
meet at the origin, the continuity conditions (13) do not apply to them
separately. In that case, if there is a central symmetry in the crack
setting and a central symmetry or antisymmetry in the loading (crack sur-
face tractions), the consequent central symmetry or antisymmetry in the
unknown functions renders the application of the numerical technique pos-
sible. What needs to be done, in that case, is to choose the collocation
points as if each crack, terminating at the origin, is extended to the
other side of the origin by a reflection.

Although the numerical solution yields the values for any elasto-mechanic
quantity, we will be concerned with the stress intensity factor only.
Besides the closed form solutions for two and three collinear cracks, com-
parisons of the numerical results of the present work were also made with
the graphical presentations of Isida [3] for other arrays of isolated
cracks. The results matched perfectly. Surprisingly enough, even the
cases of parallel cracks have been treated (the results matching with those
of [3]), just by taking the angle between the cracks small enough. (It
must be noted that, the origin being at infinity, the case of exactly
parallel cracks cannot be treated by the present method).

The special case of four symmetrically situated radial cracks under con-
stant internal pressure was also treated and the results were in good
agreement with those of Tweed and Rooke [4].

The results of the present work for cross-shaped cracks with two pairs of
unequal arms, loaded with unequal constant normal tractions were compared
with those given by Sneddon and Das [5]. The results obtained for the case
of nonuniform internal pressure for a cross-shaped crack with equal arms
were compared with the results of Stallybrass [6]. There was a mismatch
of about 0.1 per cent for both cases when 20 points of collocation were
taken along each branch.

Some other cases, which cannot be found in the literature, have been con-
sidered. Choosing a suitable parameter for each case, the two types of
stress intensity factors at all crack tips were presented in graphical

form (Figures 2 - 4). For these computations sixteen collocation points
were taken along each isolated crack and each branch of the X-shaped crack.
The results for the limiting cases of single and two or three collinear
cracks were observed to coincide with those in the literature [3]. Because
of limited space, loadings which cause partial closures could not be in-
cluded here, although a number of such cases were treated, making use of
the procedure in references [7, 8]. For the same reason an X-formed array
of antisymmetry could not be exposed here.
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APPENDIX
*
Hy (x,2Mm/N) = (x*-1)Cy + x cos(2Mm/N)
*
Hp (x,2Mm/N) = (x2-1)S1 - x®Sz + x sin(2Mw/N) ,
*
Ha(x,2Mm/N) = (x*-1)S; - Sz - x sin(2MW/N) ,
*
Hy (x,2Mm/N) = (1-x*)Cy + (x*+1)Ca2 - X cos(2Mm/N) + 2
where
C; N 2-j N-% {cos
£ S I (. R 1 zx b2/ |, i=1,2 .
S. N 2 N sin
j 2=1 2(x-1) x -1
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Figure 1 The Geometry and Notation
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Figure 2 (a) Opening Mode Stress Intensity Factors for 3 and 4 Radial
Cracks Under Uniform All-Round Tension, 0o

(b) Edge-Sliding Mode Stress Intensity Factors for 3 and 4 Radial
Cracks Under Uniform All-Round Tension, Oo
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Figure 3 Stress Intensity Factors for an Array of Cracks with Central
Symmetry Under Uniform All-Round Tension, Co
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Figure 4 Stress Intensity Factors for an X-Shaped Crack Under Uniform
All-Round Tension, Og
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