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THE PROPAGATION AND BIFURCATION OF CRACKS IN QUARTZ

é A. Ball and B. W. Payne*

INTRODUCT ION

| A recent publication [1] has described the results of a series of experi-
ments which investigated the tensile fracture of quartz crystals as a

i function of temperature, environment and crystal orientation. In this

| paper we shall concern ourselves with attempts to understand the unusual

zig-zag fractography exhibited for most axial orientations and the pheno-

menon of bifurcation. A brief recount of the pertinent experimental res-

ults will be a necessary preliminary to the discussion.

Crystal plates (60 x 10 x 1mm) were loaded in tension and fracture prop-
agated from the notch or sharp crack which had been previously introduced
at the edge of the specimens by a thermal shock technique or by a fine
diamond saw. The measurement of the initial notch length co and estima-
tions of the notch radii r suggest the observed fracture stresses Of are
given by the familiar equation viz.

g = <Eyr/4aco)“2 (1)

where E, Young's modulus, has a mean value of 100 Gnm % and 'a' is the

lattice parameter. The equation reduces to the Griffith equation if the
tip of the sharp initiating crack has a radius of 2.5a. Thus, values of
og obtained from the fracture of crystal plates which contained sharp
cracks produced by thermal shock treatments gave a mean value of 2Jm 2

for 'y, the fracture surface energy. Using this value and experimental
values of of and co we are able to deduce that machined notches have tip
radii in the range 5a to 20a. In conjunction with these experiments, the
velocities of crack propagation were measured by either the electrical
resistance grid technique or by the analysis of Wallnmer lines on the frac-
ture surfaces. The measurements were confined to one particular orient-
ation which fractured in a planar fashion and did not generate piezo-
electric charges during fracture which normally interfered with the grid
signals. The continuous lines on Figure 1 are the curves fitted to the
data obtained by the two experimental techniques for four specimens. The
initial rates of acceleration depend upon the notch radii and blunt cracks
attained a high velocity in a short distance compared with the more grad-
ual approach to terminal velocity of cracks propagating from sharp
'Griffith' cracks. Maximum velocities attained within the 10mm wide spec-
imens ranged between 2.2 and 3.1 kms ! (i.e. 0.68 to 0.97 of the Rayleigh
wave velocity VR).

The fracture surfaces of crystals of most orientations exhibited the fol-
lowing characteristic features - an initial flat mirror-like region which
acquires zig-zags or steps. These steps, which appear to be crystallo-
e
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graphlc, increase in size with distance until bifurcation or crack branch-
ing occurs. A good example of the fractography is shown in Figure 2 where
the step planes and bifurcation planes can be identified with the two
ﬁhombohedral planes which are equally inclined to the tensile axis Bi-
tu?catlon occurs at a distance cp. The relationship Ofcb”2 = conséant
which haslbeen found for other materials, is observed for quartz and tﬁe
bgst straight line fit of experimental values of Of plotted against cp 2
gives a value of 1.64MNp %2 for crystals tested at room temperature in
vacuo or water free toluene.

In summary the experimental work indicates that the radius of the initial
crack.nuclgus determines the fracture stress which, in turn, controls the
veloc1ty—dlst§nce relationship during propagation. The undérstanding of
tbe characteristic fractography and bifurcation requires a consideration
ot the changes in the dynamical stress field as the crack accelerates.

RATIONALE

The elastig solgﬁion for a moving crack has been obtained by several
éuthors using different assumptions. Yoffé [2] considered the problem of
a Tra;k of cgnstant length moving in a uniform stress field at constant
Ye ocity, while Broberg [}], Craggs [4] and Baker [5] considered a crack
growing at constant velocity. Two important results were obtained:
1) that the maximum or terminal velocity should be that of Rayleigh
- surface waves, VR,
ii) that mixima occur in the radial stress ahead of the crack tip op

at angles other than © = 0° when velocities in

excess ;
are attained. S

We shal} cgnsiderithe solution of Yoffé and assume, for simplicity, that
quartz is isotropic. The radial stress is given by: '

0y = g (c/20) 12 gy, 0) (2)

wh%ch is simply the static solution multiplied by a cumbersome function
which contains the variables velocity and angle. The infinite value of
0@ at the Bayleigh velocity marks the maximum velocity of brittle cracks
and emph§51ses that Yoffé has treated the crack as a moving elastic dist-
urbgnce in a way similar to that in which Eshelby [6] investigated a
moving dislocation. It should also be noted that the angular dependence
z;tce iﬁows a.flat maximum at © = 0 up to velocities of =0.65VR. There-
fori:o,gng?XImum moves around and is at z60° for V = 0.77VR and at +80°

In a real S}tuation the crack velocity varies with crack length and hence
the eyaluaplon of F(V,0) at any instant requires the knowledge of the
veloglty—dlstance relationship. An expression has been derived from
considerations of energy balance by Berry [7].

V2 = vmax2 <1 4 co/c)< = {n—l} co/c)

The maximum velocity Vmax, which occurs when ¢ >> co, is given (ZHE)UZ/kp
whgre P is the density of the material and k is a constant. The value of
n is given by twice the ratio of the square of the Griffith stress to the
square of the measured fracture stress, i.e:
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n = 20g%/0.? = 4Ey/mc 0" |

Thus, if the expression (1) is used for of, n will be given by twice the
ratio of the Griffith crack-tip radius to the actual crack-tip radius.
For the present specimens, the value of n will lie between 0.25 and 1.
The experimental determinations of velocity together with the limiting i
curves (n = 0 and n = 2 and Vpax taken as VR) are shown in Figure 1. It
should be noted that the magnitude of of, which is dependent upon the
radius of the initial crack, does not determine the maximum velocity but
rather the distance which the crack travels before a given velocity is
attained. The less sharp the initial crack the higher is the value of Of
and hence the smaller value of n results in a more rapid increase in vel-
ocity with distance.

PRI S o | e OBy

The experimentally determined velocity-distance curves for quartz can now
be used to determine the value of F(O,V) in equation (2) for a constant
value of © (= 30°) at increasing values of crack length. The static
effect of increasing c¢ can be included by multiplying by cH2. The value
of 0g = Of(C/ZE)lQF(@,V), can be calculated at a given radial distance L
for any value of the fracture stress Of. If it is assumed that the change
in direction of crack propagation occurs at some constant critical value
of 0g, then the lengths of the zig-zags should be given by:

1/2<cf/o®)2c.F2<®,V>

This expression is plotted against c/co for a typical velocity distance ¢
profile for quartz in Figure 3 for comparison with the values of zig-zag |
lengths of several specimens. A satisfactory agreement can be observed.

The zig-zags, like the mist and hackle zones on the fracture surface of
glass, are probably manifestations of unsuccessful attempts at crack bi-
furcation along crystal planes. The phenomenon would seem to be an
example of dynamical instability of the type discussed by Pippard (8].
Figure 7 of his published lecture depicts a ball rolling in a trough.

As the trough increases in radius the frequency of oscillation about the
central equilibrium position falls continuously to zero. At this point,
instability arises and a new configuration with a different symmetry is
obtained. The analogy with the zig-zag crack propagation and eventual
bifurcation is obvious. As the crack velocity increases, the dynamic
stress field profile changes in the same way as the trough shown in
Pippard's figure. The frequency of oscillation corresponds to the fre-
quency of the zig-zag motion and Figure 3 shows that the measured step-
length increases rapidly as the point of bifurcation is approached. Since
the velocity of the crack is increasing very slowly at this stage, this
corresponds to the approach of the frequency to zero. Crack branching
will eventuate when the crack velocity reaches a critical value such that
the dynamic stress field is sufficient to propagate two independent branch
cracks. These cracks must be moving at velocities sufficient to allow
them to escape without either unloading the other. The critical velocity
condition should be found by a consideration of total energy of the system,
or alternatively by a consideration of the dynamic stress field, Any
successful treatment must predict the experimental result ObeUZ = con-
stant and values of cp/co in the range 2 to 10 for the quartz crystals.
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Follow;ng the conservgtion of energy treatment discussed by Erdogan [9]
and using the appropriate expressions for strain, surface and kinetic

" 22 e
koc?vy cfz/ZI:2 = nofzcz/E + 4yc = constant

Differentiating with Tespect to ¢, taking ¢ = Cb at the critical velocity

of Ve and using the expression (ZWE/ka" for th i i
! ' € maximum vel t f
crack VR, the following equation is obtained: e ot the

gfcbuz = (ZEY/T)UZ {1 - (%C/VR? Gk + cde/di)}‘”z

?ince the experi@ental determinations of velocity distance relationships
show that dv{dc 1S very small and tends to Zero at distances greater than
¢/co ~ 4, this €quation can be rewritten in the form:

oec 2 o f o u2fy _ v o2y 212
£ ( v/ Ve /vy

The equa?ign indicates that Ofcb“2 should be constant for a given material
and cgndltlons of testing if bifurcation Occurs at some constant Ccritical

velo;le. If the experimental value of 1.64 MNm~ ¥2 for Ofcbuz is used

a critical branching velocity of 0.976VR is predicted. This value is too

2y = KSZ(C)F(V)/E

where Ks(c) is the static Stress intensity of Uz i
> S ¢ Y given by of(mc) and F(V) is
a function of the crack velocity., If bifurcation occurs at a crack length

cb_when a Critical velocity Vy is attained, then the equation can be
written in the form:

Uz _ 1
gecy {ZEy/nF<;b)} 2

where F(Vp) is the particular value of the function at v = Vb. It will be
noted that expression for ogcp¥? is a4 constant for a particular material
s required by the experimental results, Values of this constant

Young's moduli E and fracture energies y for various brittle mate;ials have
been used to obtain estimates of F(Vb). These are given in Table ] to-
gether with the corresponding values of Vb/VR which have been taken from
the graph of Freund's function F(V). The branching velocities lie in the
range 0.68VR to 0.8VR and compare favourably with experimentally deter-
m}ned valugs for Crystalline materials. It can be conjectured that the
discrepancies in the case of amorphous materials are due to appreciable
dependence of Y on crack velocity for these materials.
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If we make use of the expression (2E‘y/7r~:o)]'/2 for the 'Griffith' stress Ig
and let a = ofz/og2 = Tr/8a, Freund's equation becomes ¢/cq = 1/aF(V).
Curves of this eéxpression are included in Figure 1 for o = 1 and a = 16
and a comparison with the experimental velocity curves suggest that o lies
between 2 and 20 i.e. the radii of the initial notches have values in the
range 5a to 50a. At bifurcation, the ratio cp/c will be given by
1/aF(Vy). Taking F(Vy) as 0.047 for quartz, cp/c, has predicted values
between unity and 20. This range embraces the experimental values. It
can be concluded that the use of Freund's equation provides a satisfactory
description of bifurcation in brittle solids.
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lable 1 Experimental Values of Uftbuz, E and y Taken from the Literature
for Crystals, Polycrystals and Amorphous Solids. These have been
used to Calculate Freund's Function F(V) from which Estimates of
the Critical Velocity for Bifurcation have been made. Experimen-
tally Determined Values of Maximum Velocities have been Included ’
for Comparison 3
M i ofep E Y F (Vs / IV Vmax/VR
Material (MNm™32) [ (GNm=2) Im=%) FVerit.) Verit./VR experimental
Quartz 1.64 100 2 0.047 0.69 0.68 - 0.97
Sapphire 7.3 400 2 0.009 0.8 0.71 - 0.8
MgO 4. 300 1.5 0.015 0.78
Silicon 5.8 182 2.5 0.009 0.8 0.81 0001
Chromium 4.5 27 2.9 0.025 0.74 (1120) 7100
96% Alumina .6 320 20 0.053 0.68
H.P. Alumina 10.3 380 21 0.046 0.69
H.P. SiiNu 9 310 16 - 70( 0.038 - 0.17 52 - 0.71 .C-
H.P. SiC 11.9 440 235 0.046 0.69 (0]
Flint glass 2 78 3.9 0.048 0.69 =t C b
Soda lime glass 2.04 70 4 0.043 0.7 0.51
PMMA 8.5 3 400 0.010 0.78 0.68
Figure 2 A Scanning Electron Micrograph of a Typical Fracture Surface
i T ! ! ' * Showing Zig-Zags and Bifurcation Together with a Schematic

Diagram. The Crystal was Pulled in Tension Along the [0001]
Direction and the Crack Propagated on Facets of Rhombohedral
Planes
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Figure 1 Experimental Velocity - Distance Curves (Solid) Together with the i

Curves Predicted by the Theories of Berry [7] and Freund [11]
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The Observed Lengths of the Fracture Steps on Several Specimens
Plotted as a Function of Crack Length ¢/cy. The Line Represents
the Step Lengths in Arbitrary Units Predicted Theoretically by
Equation
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