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THE J-INTEGRAL EVALUATION FOR CT SPECIMEN

T. Miyoshi* and M. Shiratori**

INTRODUCTION

Rice's method for the J-integral evaluation [1] is convenient for its
simpleness, but the accuracy of Rice's method is not investigated suffici-
ently. The J-integral evaluation by Rice's method is compared to the one
by the finite element method for the standard bend bar specimen (a/W=0.5).
The result is that Rice's method gives the higher value than the finite
element method by about 10%. For the compact tension specimen, Rice's
method must be investigated on its accuracy, because it pays no consider-
ation to the effect of axial force. In this paper, the J-integral for
the compact tension specimen is evaluated by the finite element method

and the accuracy of Rice's method is investigated based on the result by
the finite element method.

RICE'S EQUATION AND MERKLE'S EQUATION [2]

Consider Rice's and Merkle's equations for the evaluation of J-integral.
According to Rice's method, the J-integral is calculated by equation (1)
based on the load-displacement curve as shown in Figure 1:

J-2A (1)

where b is the ligament length of the specimen.

Merkle et al. propose the equation which considers the axial force as
well as the bending force. Considering that the axial force shifts the
stress reversal point by ac as shown in Figure 2, they obtain equation (2)
for the J-integral evaluation for CT specimen:
naA+n C
J=__Abc 2

where A is the strain energy, C is the complementary energy of the spec-
imen and
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J-INTEGRAL EVALUATION BY FINITE ELEMENT METHOD

The J-integral evaluation is carried out for CT specimen shown in Figure

3. The mechanical properties of the material are represented in Table 1.
The concentrated load is applied at the top of the loading pin hole shown
in Figure 4, and the 318 elements and 194 nodes are used for the calcul-

ation of plane strain.

There are three ways to evaluate the J-integral based on the result by

the finite element method:

1) J-integral is evaluated by equation (1) using the strain energy
obtained by the finite element method.

2) J-integral is evaluated by equation (2) using the strain energy A and
the complementary energy C obtained by the finite element method.

3) J-integral is evaluated by calculating the difference of the strain
energy AU, as J-integral is given by equation (5):

o= - oU _ _ U(atha)-U(a) _ AU (5)

da Aa " ha

J-integrals given by the methods (1), (2), and (3) are hereinafter refer-
red to as Jps Jf, and Jg, respectively.

As shown in the bend bar specimen, J and K; are related by equation (6)
for the elastic state. Therefore, K; can be evaluated from J-integral of
the elastic state:

1-\)2 2 .
3 KI (for plane strain) (6)

J =
In Table 2, the values of K; obtained from Jg are compared to the analy-
tical values, and the good coincidence is obtained. The values calcul-
ated from Jp and Jf do not agree with the analytical ones. This is
because of the accuracy of Jg and Ji is getting worse when the deformation
is small. The fact that Ky values calculated from Jg coincide with the
analytical solutions is just one of the bases which take account of the
validity of the J-integral evaluation by equation (5).

Numerical results of Jrs Jg, and Jg based on both the incremental theory

and the deformation theory of the plasticity are presented in Table 3.

It is shown from this table:

1) Jgp, not taking account of the axial force effect, underestimates the
J-integral value.

2) J is about 10% higher than Jg for the wide range of §.

CONCLUSIONS

Rice's method, paying no consideration for the axial force effect, gives
lower estimation for CT specimen. Therefore, when we evaluate the J-
integral value by this type of equation, it is desirable to use Merkle's
equation.

Rice's equation for the bend bar specimen and Merkle's equation for CT
specimen seem to give higher values than equation (5) which, in the
authors' opinion, gives most accurate values of J-integral. The depen-
dence of Jic values on the specimen geometry [3] seems to be based on
the evaluation method of J-integral, partially.
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Table 1  Mechanical Properties of A533B Steel
Young's Poisson's Yield Hardening
Modulus Ratio Stress Rate

(MPa) (MPa) (MPa)
205800 0.3 480 2060
Table 2 KIZBZW/PZ for CT Specimen
a/w Analysis F.E:.M.
0.50 92.16 91.59
0.52 104.24 102.47
0.54 118.59 117.31

Table 3  J-integral for CT Specimen (a/W=0.52)

Disp. Incremental Theory Deformation Theory
*

8 JE JR J JE JR J*
0.10 3.09 1.93 2.43 3.09 1..93 2.43
0.15 5.36 4.99 6.12 5.36 4.99 6.12
0.20 7.85 8.34 10.32 7.85 8.34 10.32
0.25 14.81 12.83 15.92 14.76 12.71 15.79
0.30 20.33 18.60 23.01 20.40 18.46 22.86
0.35 28.55 25.40 32.59 28.36 25.29 31.22
0.40 37.26 33.26 40.95 37.01 33.17 40.84
0.45 46.71 42.20 51.81 46.43 42.07 51.64
0.50 56.98 51.94 63.59 56.88 51.80 63.39

(8:mm, J:kPasm)
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Figure 1 Load-Displacement Curve
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Part V - 4nalysis and Mechanics
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W=50mm, a/W=0.52
B/W=0.50, H/W=0.30

Figure 3  Geometry of CT Specimen
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Figure 4  Nodal Breakdown of CT Specimen
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