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THE FRACTURE MECHANISM OF MATERIALS HAVING
A HETEROGENEOUS STRUCTURE

V. P. Tamuzh, P. V. Tikhomirov and S. P. Yushanov*

INTRODUCTION

Mathematical modelling of the behaviour of a material subjected to loading
is commonly based on two main assumptions - on homogeneity of the material
on the one hand and on continuity of the medium on the other.

Basically there are hardly any objections to the bringing of these hypo-
theses into the study of deformation characteristics of a material, although
we find a number of articles [1, 2] operating with non-homogeneity of the
material in modelling these characteristics. However, after a careful
examination of processes of scattered fracture, that is the fracture pro-
cesses developing more or less uniformly all over the bulk of the material
it is believed that the hypothesis of homogeneity is hardly admissible in
this case. There is no better proof for such a statement than the fact
that almost all processes associated with the accumulation of damage are
qualitatively like those expressed by creep curves (with the upward bend
of the curve close to fracture not necessarily taking place). To illus-
trate this one might point out the change of the Young's modulus in cyclic
loading [3], the accumulation of submicrocracks and free radicals in poly-
mer materials [4], and the like. An explanation of such processes is easy
to find in the simple fact that at the start of testing there is rather
rapid fracture of weak bonds followed by slowing down of the process until
a more or less constant rate of accumulation of damage is reached.

Concerning the other assumption, in our subsequent discussion we speak of
the structure as consisting of elements, i.e., of polycrystalline grains,
and by elementary fracture process we mean the fracture of the grain face,

The introduction of inhomogeneity of the material in the mathematical
model directly involves a statistical approach to the process of fracture.
But since the classical statistical theories of brittle fracture include
no time variable in the fracture process they also exclude the description
of the long-term and fatigue strength of the material. This is the reason
we chose a statistical kinetic model for study of the fracture mechanism.
An analogous approach is used in references [S - 9] which examine the
fracture of a homogeneous material consisting of discrete elements, and
also in references [10, 11] which discuss the fracture of a homogeneous
medium.
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DISCUSSION OF MODEL

As stated above, the material is composed of grains, and fracture occurs
only between their faces. The stresses are calculated as for isotropic
elastic bodies and are averaged at the grain faces. It is assumed that
the fracture of the grain face is a random process which is defined by the
mean time of expectation T

o
u -Y
T = T, exp [ =T ] Y

= constant that equals to 10713 - 10717 sec,

where

-

o : :

uy = activation energy for the fracture process,
Y = overstress factor,

g = mean normal stress acting on the grain face.

Inhomogeneity of the structure is represented by the distribution function
y of the factor Y [12].

For simplicity of calculation we further deal only with the fracture of
oriented structures, the external loading force 0, being applied parallel
to the axis of orientation.

We introduce a definition [5]. If the fracture affects a number of adjacent
faces, j, the defect obtained we call a j-defect and its area is equal to
jF, where F stands for the average area of the grain face. By analogy, the
non-fractured grain face assumes the name of 0-defect. In order to calcu-
late the stress concentration round the defect we regard its form as a
spheroid with radius

L

™

and with height H, see Figure 1. It should be noted that we neglect inter-
actions between defects and their coalescence. Now, having assumed that
fracture is caused by the mean stress acting on the grain face we have to
find the mean stress acting within a ring, the width of which is the aver-
age diameter of the grain face, i.e.,

.
™

On the basis of precise solutions from the theory of elasticity dealing with
cavities of radial spheroid form [13], we infer the mean stress values ex-
pressed as elementary functions. Table I lists the values of ¢j =0 : Oy
for two values of r. It should be observed that for l-defects with

r = 0.0012 R we obtain H = 0.05 R, and r = 0.86 R corresponds to H = 0.99 R.
Column I gives the values of ¢; for the faces directly surrounding the
defect and column IT shows the values for the faces of the next row.
Poisson's ratio is assumed to be 0.3. From Table I we may conclude that:

a) the value of ¢; is scarcely dependent on the value of r, and as we
are not quite certain Jbout the nature of the latter it is assumed in fur-
ther discussion that T equals 0, that is, we regard defects as penny-shaped
cracks;
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b) Fhe mean stresses acting upon the grain faces of the second row
are considerably smaller than those acting upon the grain faces of the
f}rst row, and consequently, it is reasonable that the stress concentra-
tion upon the grains of the second row be neglected.

Nowllet us consider the kinetics of the accumulation of defects. Through
a llngar transformation of the random variable Yy from equation (1) and

the distribution function Y of the factor y we come to the distribution of
1geT for a definite 0 :

u
[¢]
(lnro - AnT + KT)KT
: (2)

g

£nn) = 5 w[

The fracture probability of the grain face with definite T at constant O
is, by analogy with radioactive decay, as follows

W) = 1-exp (- 1) - 3

However{ ;n the case where the value of f(lgt) has a distribution, by
generalizing equation (3) we have,

L=-}

w(t) = S {1—exp —[é;ET%EEj]f(QnT)dlnT . )

-0

Further_we determine the probability density of the transition of a j-
defect into a (j+1) - defect. If j-defects are surrounded with n 0O-defects
the probability of transition from a j-defect into a (j+1) - defect is '
[1—W(t)]n, and correspondingly the probability of transition from a
j-defect into a (j+1) - defect is equal to

1 - [l—W(t)]n . (5)

The probability density of a transition from a j-defect into a (j+1) -
defect may be derived from equations (4) and (5),

RPN L6 Sl e BT/ (5} in 17
Pj (t) = It 5 } & n[l—W(t)]n ! / exp[-x-texp(-x)]f(x)dx . (6)

We introduce a definition - the value of W;(t) is the probability that an
0 - defect nucleates a defect having size %_j. Then the value of W;i(t)

is_computed from equgtion (4) whereas the value of f(x) is calculated for
0 = 0y,. The expression Wj(j > 2) may be obtained from equation

t

HOR ¥ wj_l(x)p;_1 (t-x)dx ,

o

where the value of f(x) of equation (6) is calculated for o = 00¢j 1
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The probability of emergence of at least one defect having size > j in

the specimen with N-faces may be determined from the equation analogous

to equation (5) w? = 1—[-1-Wj(t)]n. When the number of grain faces (N) is
considerable then

w? =1 - exp(-H;N) . N

RESULTS OF CALCULATION AND DISCUSSION

As reported in [14] highly-oriented capron is characterized by
u, = 26.7.10‘2°J, Y = 14.8.10"2°mm3. 1In calculations T is assumed to be
293K. We chose the Weibull distribution for overstresses y(Y)

n-1 N
B ewl-dH T v

w |z
v
=

vY)

]
(=]
<

A
=

yY)

with the following parameters u = 6.5.1072%, s = 1072°, n = 0.07. See
Figure 2.

Results of calculations are given in Figures 3 - 6. Figure 3 shows the
probability of the transition of a (j-1) - defect into a j - defect. It
is apparent that with growth of j the curve tends to the right and that
considerable growth of j results in an almost immediate enlargement of
the defect. This means that the limit curve, as shown in Figure 4, shows
the probability that the grain face will nucleate a defect which causes
the ultimate fracture of the specimen. We define this probability as Wg,
and similarly W¥ stands for the probability of emergence of a critical
defect in a specimen having N-faces.

The mean size of the structural element of oriented capron is 10 - 25 mm
[15]. By assuming the grain face to be 20 mm, a specimen with a volume
of 10°mm® will possess 1.25.10'7 faces exposed perpendicular to the
applied force. The fracture probability of the whole specimen is assumed
to be W¥ = 0.5. Then from equation (7) we determine the probability that

any grain face will nucleate a critical defect, i.e., 1gWg = -17.3. Figure 3
allows us to derive the logarithm of the fracture time as given in Figure 6.
The value of U, resulting from Figure 6, U = 25.5.10"2° J, closely approxi-

mates to that obtained experimentally, U, = 26.7.10-2% J. As noted in [16]
the value of U, agrees well with the value of activation energy for the
thermodestructive process and might be easily determined from independent
physical tests. This means that only constants of distribution, y(Y),
remain undefined. Figure 5 depicts the curves that show accumulation of
defects at different stresses. As it stands, the concentration of 1 -
defects is approximately 10° higher than the concentration of 4 - defects
and hence the difficulty arises of revealing large defects.

As seen from graphs of Figure 5 the probability of emergence of critical
defects in the wide region of probability might be well characterized by
a straight line &n Wg = mint + B that corresponds to Wg = exp(b)t™. By

replacing Wg in equation (7) we come to the Weibull distribution
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W= 1 - exp [-exp(b)t"™N]

for the fractur i . . .
oFfech. e time. The above formula and Figure 4 give the size

IE conclusion it should be mentioned that the model discussed embraces
the whole fracture process and pPresents a natural transition from the

process of scattered f i
presE racture to the process of propagation of the macro-
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Table I .
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Figure 5 (a) Accumulation of 1-Defects
(b) Accumulation of 4-Defects
tg - time prior to fracture 1 -05=4.9 10% Pa
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Figure 6 Curves of the

Long-Term Strength of Oriented Capron

1 - Experimental Data [14], 2 - Calculation Data
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