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SUDDEN TWISTING OF A PENNY-SHAPED CRACK
IN A FINITE ELASTIC CYLINDER

E. P. Chen*

INTRODUCTION

In the field of fracture dynamics, much of the previous investigation have
been concerned with the determination of the nature of the dynamic stresses
near a crack in a body of infinite extent. For axisymmetric geometry, a
number of papers [1-5] have discussed the inertia effect on the dynamic
stress intensity factors. However, due to the mathematical complexities
involved, the interaction between scattered waves by a penny-shaped crack
and reflected waves from finite boundaries has not been considered.

In this paper, the torsional impact response of a penny-shaped crack in a
finite elastic cylinder is considered. Application of the Laplace and
Hankel transforms reduces the problem to the solution of a pair of dual
integral equations. These equations are solved by using an integral trans-
form technique and the result is expressed in terms of a Fredholm integral
equation of the second kind. The time dependence is recovered by applying
the Laplace inversion theorem. Numerical solutions are obtained for the
amplitude of the local stress field near the crack; that is, the dynamic
stress intensity factor. The influence of the interaction between scatter-

ed waves by the crack and reflected waves from the boundaries are discussed.

Although only stress-free cylinder surface condition is considered, other
boundary conditions can be treated in a similar manner without additional
difficulties.

PROBLEM FORMULATION

Let the axis of an elastic cylinder coincide with the z axis of a cylin-
drical polar coordinate system (r,6,z). The cylinder is made of a homo-
geneous and isotropic material and its radius is denoted b. A penny-
shaped crack of radius a is lying on the plane z=0 with its center at the
origin of the coordinate axes. The geometry of the problem is shown in
Figure 1.

The displacements in the T, 9 and z directions are denoted, respectively,
by u,, ug and u;. The cylinder is under the action of a rapidly applied
torque such that the material particles experience only an angular dis-
placement. Hence, ur and u, vanish throughout the body and from symmetry
considerations, u, is a function of T, z and time t only.. The displace-
ment field can thus be written as

u, = uZ =0, ug = ue(r,z,t) (1)

-
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Corresponding to equations (1), all stress components except Tpg and Tg,
vanish and the shear stresses are given by the following expressions:

du u
_ 5 s
Tre(l‘,z,t) = U (gr— - ;—- (2)
Sue
Tez(r,z,t) =y 3z (3)

in which u is the shear modulus of elasticity. Substituting equations (2)
and (3) into the equations of motion of elasticity, it follows that two of
them are identically satisfied and the remaining one renders
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The shear wave velocity cp, is given by cp = (u/p)”Q with p being the mass
density of the material.

The cylinder is assumed to be initially at rest. A torque T of magnitude
T = Wb“TO/(Za), with T having the dimension of stress, is suddenly applied

to the elastic body generating torsional waves normally incident on the
crack. By the principle of superposition, the equivalent boundary con-
ditions for which the wave passes across the crack plane at t=0 can be
written as

To, (T,0,t) = - T_(PH(t), 0<r<a (5)
ug(r,0,t) = 0, r>a (6)
In addition, the traction-free condition at the cylinder surface requires
Tre(b,z,t) =0 (7

Equation (4) is to be solved under the constraint of equations (5), (6)
and (7).
Applying a Laplace transform pair

£4(p) = J £(t)ePhar, £(t) = 5= S £*(p)ePap (8)
[¢] Br

to equation (4) yields

3%u* du* a* 9%u* 2
6,186 _ "8, b=p__u6 (9
or? T 9T r? 9z?2 c3
For a finite cylinder, the solution to (9) may be written as
ug = f A(s,p,Jd1(rs)e "Zds + [ B(s,p)I;(yr)sin(sz)ds (10)
o o
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where J_ and In are, respectively, the nth order Bessel and modified Bessel
function of the first kind. The function y is given by

y = ¥s? + & (11)
2
Cc32

Making use of equations (2), (10) and the Laplace transform of equations
(5) and (6) renders a pair of dual integral equations:

o 4 T.r

J YA(s,p)Ji(xs)ds = S sB(s,p)I,(yr)ds + E§§3 r<a (12)
o) o

S A(s,p)Ji(rs)ds = 0, r>a (13)
o]

The relationship between A(s,p) and B(s,p) is found, by taking Laplace
and Fourier sine transforms on equation (7), as

5 @ NA(M,p)Ja(bn)
YB(s,p)I2(Yb) = e S ——— dn (14)
0 n?+y?
A solution to equations (12) and (13) satisfying equation (14) may be ob-
tained by a procedure described in [5] and the result is

Yasa ZTan 1
Als,p) =" 355§ Yn #*(n,p)Jsz2(san)dn (15)

where the function &*(n,p) is governed by a Fredholm integral equation of
the second kind:

1
?*(E,p) + { K(E,n,p)®*(n,p)dn = g2 (16)

The symmetric kernel K(&,n,p) is defined by

1
K(En,p) = YEn { ] (v'-5)J3 (Es)J s (ns)ds

b
2@ g2 Ke(y' )
== f 77-—~————~—-Iaq(EY')Iaz(nY')ds} (17)
° Lo Y
2 a
in which
2 2a2
y' = VST + E—;— (18)
Cc2

and K2 is the second order modified Bessel function of the second kind.
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NUMERICAL RESULTS AND DISCUSSION

Following the same procedures as in [3], the stresses local to the penny-
shaped crack in the Laplace transform domain may be obtained as

8
4 »*p 1 Y
Tre(r1,01,p) = - 1 ya 2(Lp) sin 5L+ 0(r%)  (19)

3m P Q;T

9
4 d*(1, 1 1
= ‘/a —(pl'l —— cos >+ 0(z") (20)

Vi

where ry; and 61 are the polar coordinates centered at the crack border in
the plane z=0. Applying the Laplace inversion theorem to equations (19)
and (20) renders

i

ng(rl)el ,P)

Ky (t) 8

T.0(r1,61,p) = - sin =+ 0(z°) (21)
21‘1
K3(t) el o
Ty, (r1,01,p) = Cos ==+ 0(r") (22)
21'1

The dynamic stress intensity factor k;(t) is defined as

ks(e) = & T VR mr Bf q’—(;’h) ePtap (23)

T

In order to obtain numerical values of kj3(t), the Fredholm integral equa-
tion (16) is first solved on an electronic computer. Once &* is determined,
the dynamic stress intensity factor may be obtained by a numerical Laplace
inversion scheme described in [3].

Note that by letting p>0, the solution presented here reduces to that for
the corresponding static case of the same geometry. Figure 2 depicts the
variation of the normalized static stress intensity factor k; = k3/(41o\a/
3m) versus the radius ratio a/b. It can be seen that as the ratio a/b is
increased, the stress intensity factor also becomes higher. The rate of
increase is very small when a/b is less than 0.5 and becomes significantly
larger when a/b exceeds 0.5. This suggests that the effect of finite
boundaries is serious only when the radius of the cylinder is less than

two times of that of the penny-shaped crack.

The normalized dynamic stress intensity factor ki(t) is plotted in Figure

3 against the time variable cz2t/a for various b/a ratios. The dynamic
stress intensity factor increases quickly, reaching a peak, and then de-
creases in magnitude oscillating about the corresponding static value.

This type of time dependence has also been observed in [3] for an infinite
geometry problem. As b/a decreases, the peak value of k3 becomes larger
and occurs at a later time. For b/a = 1.1, the interaction between inertia
and finite geometry can increase the dynamic stress intensity factor by 65%
over its corresponding static value in an infinite medium. Hence, it is
obvious that this interaction effect is quite significant and cannot be
ignored.
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In summary, the interaction effect betw?ep scattered.waves by a ?egny-
shaped crack and reflected waves from finite boundar1e§ on a cyl}n er
under torsional impact has been determined. The @ynamlc stress 1ntens;ﬁy
is found to be a function of time and the geometrical Parameter b/a. . e
dynamic stress intensity factor reaches-a peak very qglckly apd thin e-
creases in magnitude oscillating about its cgrrespondlng.staylc va Ee.
The peak value of the amplitude of the dynamic stresses is higher when
the ratio b/a is reduced.
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Figure 1  Finite cylinder containing a penny-shaped crack Figure 2 Normalized static stress intensity factor versus a/b
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DYNAMIC STRESS INTENSITY FACTOR
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Figure 3 Normalized dynamic stress intensity factor versus time
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