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STRESSES AROUND A POLYMER CRAZE

C. H. Liu and C. C. Hsiao*

INTRODUCTION

The understanding of stress crazing of polymeric solids has come a long
way since its earlier studies. Just before 1950 [1] the craze mechanism
was for the first time associated with molecular orientation. Subsequently
various physical and chemical methods have been utilized to determine and
confirm this molecular orientation behaviour in a tensile stress field [2].
Essentially under stress certain polymers deform from sites where large
stress concentrations are present. Because of geometrical constraints the
polymeric long chain molecules orient themselves in bundles as domains [1]
in the direction of stressing like many tensile specimens distributed be-
tween the craze boundaries. As a result voids are created and the density
of the medium in the crazed region is reduced. These domains containing
oriented molecules act as elastic springs forming an elastic foundation
and are bounded by a similar layer of oriented molecules as a continuous
membrane which eventually form distributed domains in the region of craze.

The general shape of several horizontal crazes in an oriented polystyrene
sheet specimen subjected to a vertical stress is shown in Figure 1. The
horizontal dimension of the photograph is about 300u which is comparable
to the diameter of the laser beam used. The specimen is illuminated by
laser from behind. The crazes are seen to be bounded with fine parallel
horizontal interference lines in between. The boundary at each central
section has zero slope in contrast with an inclined one at the tips. The
similarities of individual crazes suggest the local nature of each craze.
Consequently a realistic model for stress analysis would likely be restric-
ted to the immediate neighbourhood of a craze. Using a membrane anology
model with varying elastic foundation, attempts have been made to evaluate
the stresses along a linear craze [3]. This report examines further the
justification and extension of the linear membrane model to a three dim-
ensional one for analyzing the stresses around a circular craze.

MODEL AND GOVERNING EQUATION

The formation of a craze comes about from a physical transformation in

the deformation processes of the polymer molecules from one configurational
state to another depending upon the applied tensile load, time, temperature,
homogeneity of the polymer, and possibly the chemical environments sur-
rounding the polymer medium. The oriented polymer bundles or domains
behave as elastic springs under tensile loads. The interface layers are
considered thin membranes formed by intermediately oriented long polymeric
molecules without much bending stiffness. They are simply bounds but are
capable of further deformation and transformation into highly oriented
molecular domain structures found in the craze. The molecular domains
possess high strength with voids among them, however. The net result is a
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reduction of the density of the medium in the craze and a redistribution
of local stresses around the boundaries of the craze.

Referring to a rectangular coordinate system Oxyz as shown in Figure 2,
the CToss-section of a craze is set in the Xz-plane with the z-axis as its
displacement direction. An applied constant tensile stress field Og is
parallel to the z-axis. First consider that the craze is linear or rect-
angular in shape with a unit depth and a total length 2c. At an arbitrary
point (x,z) an infinitesimal element of length ds is subjected to forces

S and S + dS as shown with force equilibrium as:

(S5+dS)cos (8+d6) - Scosh = 0, (1)
(S+dS)sin(6+d8) - Ssinf + oodx - 0(x)ds = 0, (2)

yhere.o(x)ds = k(x)z(x)ds is the force exerted by the distributed spring
function k(x) along the arc length of the membrane whereas the applied
force is gpdx.

Utilizing proper trigonometric relations and limit fundamentals, equations
(1) and (2) can be reduced to give:

(Scose)x = 0, (3)
(Ssinf) = - o + 0/cosb, 4)

where the subscript x represents the differentiation with respect to x.
These equations can further be reduced to:

s, = - 0, cosb + g, (5)

In terms of the X, z coordinates, it appears as:

~12 12
(l+zz> Sz.. = -@ % 0<&+zz> (6)
X XX o X

wiere the double subscripts xx represent the second order derivative.

From this governing differential equation both the displacement field

2(x) and stress field 0(x) are obtainable with the boundary conditions
;x(U) =0, z(c) =0 provided for a homogeneous medium. Remember that o

1S a linear function of z. Thus equation (6) is nonlinear with no apparent
analytical solution. Numerical solutions indicate that, 4t is, however,
possible to simplify equation (6) by assuming small deformations for which
the slope of the craze displacement field is very small. Then equation

(6) can be reduced to:

SzXX = -9, *o. (7)

fﬂis applies to the study of a linear craze occurring often on the surface
ot a brittle polymer. An analysis of this type of craze has been made
carlier [3],

For a circular craze occurring usually in the interior of a homogeneous
polymer under Stress, the above formulation may be extended. Consider
polar symmetry and introduce the forces in the y direction in an infinite-
simal elemental plate dxdy of thickness h. If the tensile forces in the
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y-direction are similar as those in the x-direction, then the governing
differential equation becomes:

S(; * iz ) =-0_+o0, (8)
XX yy o
In polar coordinates the above differential equation transforms to:

S<;rr + Zr/r> =-0,+0, 9)

where r is the radial coordinate and o(r) = k(r)z(r).

Equation (9) can be solved if k/S is a constant. Physically k is the
modulus function of the oriented craze medium at position (r,z) in units
of force per unit length per unit area; and S is the tensile force in the
membrane per unit length in the neighbourhood of the same position (r,z).
They both describe the tensile behaviour of the oriented polymer molecular
domains but at slightly different stages or orientation [4]. Therefore it
1s reasonable to assume that their ratio does not change. That is we can
let a® = k/S where o is a constant. Now substitute Y = ar in equdtion (9)
as a new variable, then one gets:

tz /Y- z=- oo/k(v), (10)

This equation has the solution:
200 = [ern ] 1,00 + [k 0, (1)

where C, and C, are two constants to be determined by boundary conditions,
and

b0 = - o fK ndy/k), (12)
v2(1) = o fI_(ndv/k(y). (13)

Depending upon the form of the modulus function k(y), analytical solutions
may or may not be obtained. If

k(y) = fkoe_y, (14)

where ky is the original modulus constant and f is a fraction which varies
between 0 to 1, then analytical results are obtainable [5]. However, they
are not totally desirable as the stress distribution at the centre of
craze does not satisfy the boundary condition that the slope of the stress
at the central position must be zero. To correct this let us employ an
adequate modulus function:

£(e%C4e™™y L 2y (1-f) (eV+e™My

ac -ac
e + e

k(Y) =k, (15)

With this modulus function, analytical solutions were not found. However,
results could be obtained numerically for the displacement field z(y) as
well as for the stress field o(y).
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RESULTS AND DISCUSSION

Based upon the model used a series of displacement fields and stress dis-
tributions for different values of f have been numerically obtained and
plotted as shown in Figures 3-10. In general it is seen that the craze
displacement field is length dependent. As f decreases from 0.5, 0.25,
0.125 to 0.01, Figures 3, 5, 7 and 9 show respectively the corresponding
increase in the displacements. For the same craze length, the displacement
tfield for the circular craze is always smaller than that of the linear
rectangular one [3]. As observed earlier experimentally [6], it is inter-
esting to note that the slope of the craze boundary does increase progres-
sively at the craze tip as craze length increases. It is also seen that
the craze displacement is progessively increasing as f reduces.

Similarly Figures 4, 6, 8 and 10 show respectively the variation of the
stress distribution corresponding to the decrease of f from 0.5, 0.25,
U.125 to 0.01. However, a closer examination of the curves indicates

that the stress distribution is very much dependent upon f for f < 0.5.
When f > 0.5, the stresses were found to be monotomically decreasing simi-
lar to those shown in Figure 4 for which f = 0.5. When f < 0.5 stress
fluctuations develop as shown in Figure 6 for f = 0.25 and Figure 8 for

f = 0.125. This phenomenon is especially true as f gets smaller and
smaller. As shown in Figure 10 stresses for any craze length have humps.
A similar trend was also observed for the linear case [3] with an excep-
tion that negative stresses could develop after reaching certain craze
length. Whereas no such stress behaviour was found for the circular craze.

Overlooking some of the differences in the production of craze, the cur-
rent results of stress distribution are qualitatively similar to those
measured experimentally [7]. For small values of f with proper craze
length given a maximum stress was found to occur always behind the craze
tip. As crazes get larger, the maximum stress shifts closer to the craze
tip. Further experiments are needed for verification of this and other
calculated behaviours. There has been one previous attempt [8] in cal-
culating stresses around a polymer craze. The model used did not seem to
match with the problem and was unrealistic. Consequently there was little
or no experimental evidence available to support it.
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Figure 1 Laset Transmission Micrograph of Crazed Polystyrene

I

Figure 2 Upper Cross-Section of a Craze in Tension
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Figure 3 Craze Length versus Displacement for f = 0.5
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Figure 7 Craze Length versus Displacement for f = 0. 125 | Fligure 10 Craze Length versus Stress for f = 0.01
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